ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 M.Sc. (MATHEMATICS) - III SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2022
 (Examination conducted in December 2022)
 MT 9222 - Classical and Continuum Mechanics

Time: 2.5 Hours
Max Marks: 70

Answer any SEVEN full questions from the following each carrying TEN marks:

1. Derive the expression for velocity and acceleration in spherical co-ordinate system.
2. (a) The position vector of two point masses 10 kg and 5 kg are $(-3,2,4)$ and $(3,6,5)$ respectively. Find the position of the center of mass.
(b) State and prove principle of virtual work.
(c) Derive the expression for generalized momentum for a system of particles.
3. (a) Obtain Lagrangian form of D'Alembert's principle.
(b) Define conservative force. Find the relation between work and kinetic energy.
4. Derive the Lagrange's equation of motion for a holonomic dynamical system.
5. Define a conservative system and prove that the conditions for a conservative system are sufficient for the existence of an energy integral.
6. (a) Show that $\left(a_{i j k}+a_{j k i}+a_{k i j}\right) x_{i} x_{j} x_{k}=3 a_{i j k} x_{i} x_{j} x_{k}$.
(b) Show that $\delta_{i j} a_{k j}=a_{k i}$.
(c) If $D=\operatorname{det}\left(a_{i j}\right)$ and $\varepsilon_{i j k} \varepsilon_{p q r} D=\left|\begin{array}{lll}a_{i p} & a_{i q} & a_{i r} \\ a_{j p} & a_{j q} & a_{j r} \\ a_{k p} & a_{k q} & a_{k r}\end{array}\right|$ then show that $\varepsilon_{i j k} \varepsilon_{p j k}=2 \delta_{i p}$ and $\varepsilon_{i j k} \varepsilon_{i j k}=6$.
7. (a) Find $\left(x_{m} x_{n}\right), i j$.
(b) If $\vec{v}=\emptyset \vec{u}$ then find $\operatorname{div}(\vec{v})$.
(c) State and prove Gauss Divergence theorem for a tensor.
8. (a) Derive the relation between the surface element in the initial and final configuration.
(b) Check if the given deformation is isochoric where the deformation is defined by equations $x_{1}^{0}=\frac{1}{3}\left(2 x_{1}+x_{2}\right), x_{2}^{0}=\frac{1}{3}\left(x_{1}-x_{2}\right), x_{3}^{0}=x_{1}-x_{3}$
9. (a) Find the vertex line of the flow defined by $\vec{v}=(1+a t) \widehat{e_{1}}+x_{1} \widehat{e_{2}}$ where a is a constant.
(b) If acceleration is a gradient of a potential then prove that the circulation around a closed curve as it moves around the fluid remains constant with respect to time.
10. (a) Show that $\rho=\rho_{0} e^{-t^{2}}$, for a given velocity field $\vec{v}=\left(x_{2} \hat{e}_{2}+x_{3} \hat{e}_{3}\right) t$
(b) Derive the conservation of angular momentum.
