ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU -27 M.Sc. MATHEMATICS - III SEMESTER SEMESTER EXAMINATION: OCTOBER 2022
 (Examination conducted in December 2022)
 MT9622 : MATHEMATICAL METHODS

Time: $2 ½$ Hours

1. The paper contains two pages.
2. Answer any SEVEN FULL questions.
3. Each question carries 10 marks.
4. Solve $\phi(x)=x-\int_{0}^{x}(x-t) \phi(t) d t$ by using Picard's method. Choose $\phi_{0}(x)=0$ and perform three iterations for solution.
[10M]
5. Reduce the initial value problem $\frac{d^{3} y}{d x^{3}}-2 x y=0, y(0)=\frac{1}{2}, y^{\prime}(0)=1=y^{\prime}(0)$ into an integral equation.
6. a) Evaluate $\int_{0}^{1}\left(y^{\prime 2}-2 y-2 x y\right) d x, y(0)=2, y(1)=1$ by Rayleigh-Ritz's method.
b) Solve the integral equation $\int_{0}^{\infty} f(\theta) \cos \alpha \theta d \theta=\left\{\begin{array}{lc}1-\alpha & 0 \leq \alpha \leq 1 \\ 0 & \alpha>1\end{array}\right.$
using Fourier transform method and hence evaluate $\int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t$.
7. Find the complex Fourier transform of $e^{-a^{2} x^{2}}, a>0$. Hence deduce $e^{-\frac{x^{2}}{2}}$ is self reciprocal in respect of the complex Fourier Transform.
8. Find the Fourier sine and cosine transform of $f(x)=\left\{\begin{array}{ll}x & 0<x<2 \\ 0 & \text { otherwise }\end{array} . \quad\right.$ [10M]
9. Find the asymptotic series of $\int_{0}^{x} t^{\frac{-1}{2}} e^{-t} d t$ as $x \rightarrow \infty$.
10. Using Watson's lemma evaluate $I(x)=\int_{1}^{\infty}\left(s^{2}-1\right)^{\frac{-1}{2}} e^{-x s} d s$ as $x \rightarrow \infty$.
11. a) Find the leading ordered term of $\int_{0}^{\frac{\pi}{2}} e^{i x \cos t} d t$ as $x \rightarrow \infty$.
b) Given $x^{2}+2 x \varepsilon-3=0$, Obtain the power series expansion in ε using perturbation technique.
12. For small ε determine the first three terms in the expansion of roots of the equation

$$
\begin{equation*}
x^{2}-(3+2 \varepsilon) x+2+\varepsilon=0 \text {. } \tag{10M}
\end{equation*}
$$

10. Solve the differential equation $\frac{d y}{d x}+y \varepsilon=x, y(0)=0$ using perturbation method. [10M]
