Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27

B.Sc. (MATHEMATICS) - III SEMESTER SEMESTER EXAMINATION: OCTOBER 2022 (Examination conducted in December 2022) <u>MT 322: MATHEMATICS III</u>

Time- 2hrs

Max Marks-60

(6X2=12)

(2X6=12)

(2X6=12)

This question paper contains **TWO** printed pages and **FIVE** parts. <u>Scientific calculators are allowed.</u>

I. Answer any SIX of the following questions

- 1. Find $\varphi(50)$, where φ is an Euler totient function.
- 2. Show that aH = bH if and only if $a^{-1}b \in H$ where *H* is a subgroup of the group *G* and $a, b \in G$.
- 3. Find the infimum and supremum of the sequence $\{2^{(-1)^{n+1}}\}$.

4. Find the limit of the sequence
$$\left\{\frac{3n^2-6n}{5n^2+4}\right\}$$

5. Solve
$$(D^2 + D + 1)y = 0$$
, where $D = \frac{d}{dx}$.

- 6. Solve the wronskian of $u = xe^x$ and $v = \sin x$.
- 7. Find $L[(t-1)^2]$.
- 8. Find $L[t\sin(at)]$.

II. Answer any TWO of the following questions

- 9. Let *G* be a cyclic group and $a \in G$. If *a* is a generator of *G* then prove that a^{-1} is also a generator of *G*.
- 10. State and prove Lagrange's theorem for finite groups.
- 11. Prove that center of a group *G* defined by $Z(G) = \{a \in G : ax = xa, \forall x \in G\}$ is normal in *G*.

III. Answer any TWO of the following questions

- 12. Prove that the sum of two convergent sequence is convergent.
- 13. If $x_1 = \sqrt{6}$ and $x_{n+1} = \sqrt{6x_n}$, show that $\{x_n\}$ converges to 6.
- 14. Discuss the nature of the sequence $\{x^{\frac{1}{n}}\}$ where x > 0.

IV. Answer any TWO of the following questions

- 15. Solve $(D^3 2D^2 + D)y = e^{2x} + x^2 + x$ where $D = \frac{d}{dx}$.
- 16. Solve $x \frac{d^2 y}{dx^2} (2x-1)\frac{dy}{dx} + (x-1)y = 0$, x > 0, given that e^x is a solution.
- 17. Solve $y'' + 9y = \sec 3x$ by the method of variation of parameters.

V. Answer any TWO of the following questions

(2X6=12)

- 18. (a) If L[f(t)] = F(s) then prove that $L[e^{at} f(t)] = F(s-a)$.
 - (b) Show that $L[e^{kt}] = \frac{1}{s-k}, s-k > 0.$
- 19. Obtain the Laplace transform of $\frac{\sinh t}{t}$. 20. Solve the initial value problem $y' - 5y = e^{2x}$ given y(0) = 2.