Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 B.Sc. MATHEMATICS-V SEMESTER
 SEMESTER EXAMINATION: OCTOBER-2022

(Examination to be conducted in December 2022) MT-5118: MATHEMATICS V

The paper contains TWO pages and THREE parts

I. ANSWER ANY FIVE OF THE FOLLOWING.

1. List all the units of the ring $\left(\mathbb{Z}_{8}, \oplus_{8}, \otimes_{8}\right)$.
2. List all the zero-divisors of the ring $\left(\mathbb{Z}_{6}, \oplus_{6}, \otimes_{6}\right)$.
3. Define prime ideal and maximal ideal.
4. Check if the mapping $f:(\mathbb{Z},+, \cdot) \rightarrow\left(\mathbb{Z}_{n}, \oplus_{n}, \otimes_{n}\right)$ defined by $f(x)=x(\bmod n)$ is a ring homomorphism.
5. Find a_{0} in the Fourier series expansion of the function $f(x)=\frac{x}{\pi^{2}}$ in the interval $(-\pi, \pi)$.
6. Find a_{n} in the Fourier series expansion of the function $f(x)=1$ in the interval $(-\pi, \pi)$
7. Evaluate $\int_{0}^{\infty} x^{6} e^{-x} d x$.
8. Evaluate $\int_{0}^{\pi / 2} \sin ^{3} \theta \cos ^{5} \theta d \theta$.

II. ANSWER ANY SEVEN OF THE FOLLOWING.

9. Define the centre of a ring and state the subring test. Using the subring test prove that centre of a ring R is a subring of R. .
10. Let R be a commutative ring with unity and b be a nilpotent element of R. Then prove that
(a) $1+b$ is a unit.
(b) if a is a unit, then $a+b$ is a unit.
11. Define an integral domain. Prove that cancellation laws hold good in commutative ring R with unity if and only if R is an integral domain.
12. Define characteristic of a ring. Prove that the characteristic of an integral domain D is either 0 or a prime.
13. Prove that $n \mathbb{Z}$ is prime ideal of \mathbb{Z} if and only if n is a prime.
14. Let R be a commutative ring with unity and let A be an ideal of R. Prove that $\frac{R}{A}$ is a field if and only if A is maximal.
15. Define ring homomorphism and ring isomorphism. Let R be a commutative rig with characteristic 2 . Show that $\phi: R \rightarrow R$ defined by $\phi(a)=a^{2}$ is a ring homomorphism.
16. Define automorphism. Show that $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(z)=\bar{z}$, is an automorphism. What is the kerf.
17. (a) Show that $\phi: \mathbb{R}[x] \rightarrow \mathbb{R}$ defined by $\phi(f(x))=f(1), \forall f(x) \in \mathbb{R}[x]$ is a ring homomorphism. Find ker ϕ.
(b) Show that $\phi: \mathbb{Z} \rightarrow 3 \mathbb{Z}$ defined by $\phi(a)=3 a$ is not a ring homomorphism.

III. ANSWER ANY THREE OF THE FOLLOWING.

18. Find the Fourier series expansion of the function $f(x)=1-x^{2}$ in the interval $(-1,1)$.
19. (a) Express $f(x)=x(\pi-x)$ as a half range Fourier sine series in the interval $(0, \pi)$.
(b) Express $f(x)=x^{3}$ as a half range Fourier cosine series in the interval $(0, \pi)$.
20. Show that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$.
21. Show that $\Gamma(n)=\frac{\Gamma(n+1)}{n}$ and hence evaluate $\Gamma\left(\frac{-7}{2}\right)$
22. (a) Evaluate $\beta\left(\frac{9}{2}, \frac{7}{2}\right)$
(b) Evaluate $\int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta$
$[2+4]$
