Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 B.Sc. MATHEMATICS-V SEMESTER SEMESTER EXAMINATION: OCTOBER-2022 (Examination to be conducted in December 2022) <u>MT-5118: MATHEMATICS V</u>

Duration: 2.5 Hours

The paper contains $\underline{\text{TWO}}$ pages and $\underline{\text{THREE}}$ parts

I. ANSWER ANY FIVE OF THE FOLLOWING.

- 1. List all the units of the ring $(\mathbb{Z}_8, \oplus_8, \otimes_8)$.
- 2. List all the zero-divisors of the ring $(\mathbb{Z}_6, \oplus_6, \otimes_6)$.
- 3. Define prime ideal and maximal ideal.
- 4. Check if the mapping $f: (\mathbb{Z}, +, \cdot) \to (\mathbb{Z}_n, \oplus_n, \otimes_n)$ defined by $f(x) = x \pmod{n}$ is a ring homomorphism.
- 5. Find a_0 in the Fourier series expansion of the function $f(x) = \frac{x}{\pi^2}$ in the interval $(-\pi, \pi)$.
- 6. Find a_n in the Fourier series expansion of the function f(x) = 1 in the interval $(-\pi, \pi)$

7. Evaluate
$$\int_0^\infty x^6 e^{-x} dx$$
.

8. Evaluate $\int_0^{\pi/2} \sin^3 \theta \cos^5 \theta d\theta$.

II. ANSWER ANY SEVEN OF THE FOLLOWING.

- 9. Define the centre of a ring and state the subring test. Using the subring test prove that centre of a ring R is a subring of R. .
- 10. Let R be a commutative ring with unity and b be a nilpotent element of R. Then prove that
 - (a) 1 + b is a unit.
 - (b) if a is a unit, then a + b is a unit.
- 11. Define an integral domain. Prove that cancellation laws hold good in commutative ring R with unity if and only if R is an integral domain.
- 12. Define characteristic of a ring. Prove that the characteristic of an integral domain D is either 0 or a prime.
- 13. Prove that $n\mathbb{Z}$ is prime ideal of \mathbb{Z} if and only if n is a prime.
- 14. Let R be a commutative ring with unity and let A be an ideal of R. Prove that $\frac{R}{A}$ is a field if and only if A is maximal.

(5x2=10)

Max. Marks: 70

(7x6=42)

[3+3]

- 15. Define ring homomorphism and ring isomorphism. Let R be a commutative rig with characteristic 2. Show that $\phi: R \to R$ defined by $\phi(a) = a^2$ is a ring homomorphism.
- 16. Define automorphism. Show that $f : \mathbb{C} \to \mathbb{C}$ defined by $f(z) = \overline{z}$, is an automorphism. What is the *kerf*.
- 17. (a) Show that $\phi : \mathbb{R}[x] \to \mathbb{R}$ defined by $\phi(f(x)) = f(1), \forall f(x) \in \mathbb{R}[x]$ is a ring homomorphism. Find $ker\phi$.
 - (b) Show that $\phi : \mathbb{Z} \to 3\mathbb{Z}$ defined by $\phi(a) = 3a$ is not a ring homomorphism. [4+2]

(3x6=18)

III. ANSWER ANY THREE OF THE FOLLOWING.

- 18. Find the Fourier series expansion of the function $f(x)=1-x^2$ in the interval (-1,1).
- 19. (a) Express $f(x) = x(\pi x)$ as a half range Fourier sine series in the interval $(0, \pi)$. (b) Express $f(x) = x^3$ as a half range Fourier series in the interval $(0, \pi)$.
 - (b) Express $f(x) = x^3$ as a half range Fourier cosine series in the interval $(0, \pi)$. [2+4]

20. Show that
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
.

21. Show that
$$\Gamma(n) = \frac{\Gamma(n+1)}{n}$$
 and hence evaluate $\Gamma\left(\frac{-7}{2}\right)$

22. (a) Evaluate
$$\beta\left(\frac{9}{2}, \frac{7}{2}\right)$$

(b) Evaluate $\int_{0}^{\pi/2} \sqrt{\tan\theta} d\theta$ [2+4]