Registration Number:

Date & session:

ST. JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc. (STATISTICS) – III SEMESTER **SEMESTER EXAMINATION: OCTOBER 2022** (Examination conducted in December 2022) **ST 9120 – STOCHASTIC PROCESSES**

Time: $2\frac{1}{2}$ Hours

This paper contains <u>TWO</u> printed pages and <u>TWO</u> parts

PART-A

Answer any SIX of the following

- 1. Define Markov chain with an example.
- 2. Define the irreducible Markov chain and construct an example for the same.
- 3. Define following terms
 - (i) transient state (ii) Random walk (iii) Stochastic matrix
- 4. What do you mean by period of a state? Find the period of all the states for a Markov

 $\frac{3}{4}$ chain $\{X_n\}$ wi 0 1 2-

- 5. Define independent and stationary increments of a stochastic process.
- 6. Distinguish between counting process and Poisson process with an example.
- 7. Explain renewal process with an example.
- 8. Calculate the probability of ultimate extinction of a Branching process whose probability generating function of the offspring distribution is given by

$$\emptyset(s) = \frac{1}{5} + \frac{s}{5} + \frac{3s^2}{5}.$$

Max Marks: 70

6x 3= 18

ith state space S= {1,2,3} and TPM,
$$P = \begin{bmatrix} 0 & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} \\ \frac{1}{2} & 0 \end{bmatrix}$$

PART B

Answer any FOUR of the following

4 x 13 = 52

9. A) For a homogeneous Markov chain $\{X_n\}$ with state space S= $\{1,2,3\}$ and initial

probabilities as 1/6, 1/3 and 1/2 and TPM P =
$$\begin{bmatrix} 0 & \frac{1}{4} & \frac{3}{4} \\ \frac{1}{4} & \frac{3}{4} & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$$
,
Find (i)P(X₃ = 1/X₁ = 2) (ii)P(X₅ = 3/X₂ = 2) (iii)P(X₁ = 2)

B) Obtain the stationary probabilities for the Markov chain in 9 A).

- C) Define first passage probability with an example. (6+5+2)
- 10. A) Show that $\{Y_n\}$ is a Markov chain, where $Y_n = \max(X_1, X_2, ..., X_n), X_n \sim B(2, p)$ for $n = 1, 2, ..., and X'_is$ are i.id. Obtain the transition probability matrix of $\{Y_n\}$
 - B) Prove that
 - (i) if state *i* is recurrent and $i \leftrightarrow j$ then *j* is also recurrent.
 - (ii) if state *i* is transient and $i \leftrightarrow j$ then *j* is also transient. (6+7)
- 11. A) Explain the gambler's ruin problem. Obtain the probability of a ruin of a player.
 - B) Define mean recurrence time. If $f_{jj}^{(1)} = \frac{1}{2} \& f_{jj}^{(n)} = \left(\frac{1}{3}\right)^n$, $n \ge 2$ obtain the mean recurrence time for state *j*. (9+4)
- 12. A) Stating the postulates of the Poisson process prove that $P(N(t) = n) = \frac{e^{-\lambda t}(\lambda t)^n}{n!}$. B) Prove the Chapman-Kolmogorov equation for continuous time Markov chain.

(10+3)

ST 9120_A_22

13. A) For a Poisson process $\{N(t)\}$ prove that correlation between N(t + s) and N(t) is

$$\sqrt{\frac{t}{t+s}}$$

- B) Derive the renewal equation.
- C) Define renewal function. With usual notation prove that $m(t) = \sum_{n=1}^{\infty} F_n(t)$. (4+5+4)
- 14. A) For a Galton-Watson branching process $\{X_n\}$ with $X_0 = 1$, mean and variance of offspring distribution as *m* and σ^2 respectively show that

$$E(X_n) = m^n \text{ and } V(X_n) = \begin{cases} \frac{m^{n-1}(m^n-1)\sigma^2}{(m-1)} \text{ when } m \neq 1\\ n\sigma^2 \text{ when } m = 1 \end{cases}$$

B) Define martingale. For $X_n = \prod_{i=1}^n Z_i$, where Z_i 's are independent random variables with mean 1 show that show that $\{X_n\}$ is a Martingale. (9+4)