Registration Number:

Date & session:

ST. JOSEPH'S UNIVERSITY, BENGALURU -27 M. Sc. (CHEMISTRY) – II SEMESTER SEMESTER EXAMINATION: APRIL 2023 (Examination conducted in May 2023) <u>CH 8321 – PHYSICAL CHEMISTRY II</u> (For current batch students only)

Time: 2 Hours

NOTE: This paper contains 2 printed pages, 3 parts, and 16 questions.

Data: Physical constants: h= 6.626x10⁻³⁴ J s, k_b=1.38x10⁻²³ J K⁻¹, c=3x10⁸ m s⁻¹

PART-A

Answer any EIGHT of the following questions:

- 1. State the linear law and write an expression for heat transfer by applying the same law.
- 2. Explain the Rabinowitch effect.
- 3. Write important features of RRK theory.
- 4. Explain the role of the co-catalyst in catalysis by BF₃ in the presence of moisture. (no need to give details of kinetics).
- 5. Write the initiation step and corresponding expression for the initial rate in the case of cationic polymerization
- 6. State two assumptions of Maxwell-Boltzmann statistics.
- 7. What is the significance of the partition function?
- 8. Write the partition function for the rotational motion.
- 9. Write an expression for the degeneracy of an atomic electronic level as per the Russell-Saunders coupling scheme. Explain the terms in it.
- 10. What is Konovalov's first law?

PART-B

Answer any TWO of the following questions

- 11. a) The gas phase reaction $H_2 + I_2 \rightarrow 2HI$ is found to follow a second order kinetics. Its rate constant at 400 °C is 2.34 x 10⁻² dm³ mol⁻¹ s⁻¹, E_a = 150 kJ mol⁻¹. Calculate at 400 °C, $\Delta^{#}H^{0}$, $\Delta^{#}S^{0}$, and $\Delta^{#}G^{0}$.
 - b) Derive an expression for entropy and its rate in a chemical reaction.
 - c) Discuss the reasons for the first and second explosion limits in the gas-phase combustion reaction between hydrogen and oxygen. (5+4+3)
- 12. a) Derive an expression for the thermodynamic formulation of conventional transition state theory.

b) Obtain an expression for the translational entropy of a monoatomic gas – Sakur Tetrode equation.

- c) Derive an expression for internal energy in terms of the partition function. (6+3+3)
- 13. a) How does chemical potential help deriving the following: i) Henry's law for gases dissolved in a liquid and ii) Raoult's law for a non-volatile solute in a liquid?

[2 x 8 = 16]

Max Marks: 50

[12 x 2 = 24]

b) The energies of the first three energy levels of the fluorine atom, determined from spectroscopy, are as follows:

Energy level	Energy (cm ⁻¹)
² P _{3/2}	0.0
² P _{1/2}	404.0
² D _{5/2}	102, 406.5

Calculate i) the electronic partition function and ii) the fractions of fluorine atoms in the three energy levels at 1000 K. (6+6)

PART-C

Answer any TWO of the following questions:

[2 x 5 = 10]

14. The following mechanism was proposed for the decomposition of an organic molecule to form the compound Y:

 $\begin{array}{l} \mathsf{RX} \rightarrow \mathsf{R} + \mathsf{X} \hdots (\mathsf{a}) \\ \mathsf{R} + \mathsf{RX} \rightarrow \mathsf{Y} + \mathsf{Z} \hdots (\mathsf{b}) \\ \mathsf{Z} \rightarrow \mathsf{R} + \mathsf{L} \hdots (\mathsf{c}) \\ 2\mathsf{R} \rightarrow \mathsf{P} \hdots (\mathsf{d}) \end{array}$

 k_1 , k_2 , k_3 , k_4 are respective rate constants. Answer the following questions:

- i) Identify the reactive intermediate involved in the second order propagation step.
- ii) Apply steady-state approximation.
- iii) Predict the overall order of the reaction.
- iv) Write a generalized statement with respect to the overall order of such reaction kinetics.
- 15. The partial molal volumes of acetone and chloroform in a mixture in which the mole fraction of chloroform is 0.46 are 74.16 and 80.24 cm³/mole, respectively. What is the volume of a solution of mass 1 kg.
- 16. a) The fundamental vibrational frequency of fluorine is 2.676 × 10¹³ Hz. Calculate the vibrational partition function at 25 °C. [N=6.022 × 10²³ mol⁻¹, h=6.626×10⁻³⁴ Js].
 b) Write the mechanism for the polymerization of styrene catalyzed by potassium amide in liquid ammonia. (2+3)