ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU - 27

B.Sc. (CHEMISTRY)- IV SEMESTER

SEMESTER EXAMINATION: APRIL 2023

(Examination conducted in May 2023)
CH 422 - CHEMISTRY IV
(For current batch students only)
Time: 2 Hours
Max Marks: 60
This paper contains FOUR printed pages and THREE parts.
(Spectral data is provided in the end of this question paper)
PART-A

Answer any SEVEN of the following questions.

1. Differentiate between line and band spectrum.
2. The chemical shift of benzene proton is 2181 Hz . Calculate the chemical shift of this proton in ppm when the instrument is operated at a frequency of 300 MHz .
3. What is zero-point energy in vibrational spectroscopy. Give the expression.
4. Between RCOOR and RCONH_{2}, which molecule will show higher $\mathrm{C}=\mathrm{O}$ frequency? Justify.
5. Give the IUPAC name of the following compounds.
(i)

(ii)

6. Neopentane has lower boiling point than n-pentane. Give reason.
7. What are meso compounds? Give an example.
8. Apply Cahn Ingold Prelog rule and assign the R or S nomenclature for the following compounds.
(i)

(ii)

9. Complete the following reactions.
(i)

(ii)

Part B

Answer any SIX of the following questions.

10. a) Discuss the isotopic substitutional effect in the CO molecule and its influence on the spacings of spectral lines in a rotational spectrum.
b) The rotational spectrum of HI consists of a series of equally spaced spectral lines with spacing equal to $12.8 \mathrm{~cm}^{-1}$. Calculate the moment of inertia and the internuclear distance. (Atomic mass of H atom and I atom is $1.672 \times 10^{-27} \mathrm{~kg}$ and $210.70 \times 10^{-27} \mathrm{~kg}$, respectively, $\left.\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$.
11. a) What is Raman effect? Discuss the origin of Stokes and anti-Stokes lines using energy level diagram.
b) Explain the effect of conjugation on UV absorption maxima by taking ethylene and

1,3-butadiene as an example.
12. a) The ${ }^{1} \mathrm{H}$ NMR spectrum of pure ethanol is different from impure ethanol. Substantiate.
b) How can you distinguish the IR spectra of primary, secondary and tertiary amines?
13. Write a note on spin-spin splitting and coupling constant.
14. Discuss the conformational analysis of butane with potential energy diagram.
15. a) Write the possible enantiomers and diastereomers of 2,3-dibromopentane.
b) Draw all the possible stereoisomers of 1,2-dimethylcyclopropane.
16. a) The concentration of a cholesterol solution is $6.15 \mathrm{~g} / 100 \mathrm{~mL}$. This solution in a 5 cm polarimeter tube causes an observed rotation of $+1.2^{\circ}$. Calculate the specific rotation of the cholesterol.
b) With suitable example explain the mechanism of Williamson ether synthesis. (3+3)
17. Explain the mechanism for the ring opening of unsymmetrical epoxides.
(i)

(ii)

Part C

Answer any TWO of the following questions.
18. a) The total number of bending vibrations of a linear molecule is 6 . How many atoms are there in this molecule. Find the total number of vibrations if this molecule would be nonlinear.
b) Identify the most stable conformations among the following. Justify.
(i)

(ii)

(iii)

(iv)

19. Sketch the functional isomers of the following compounds.
a) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
b) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
c) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
20. The ${ }^{1} \mathrm{H}$ NMR of a compound with molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$ consists of four signals (Data is given in the table). IR spectrum of this compound shows two strong peaks at 1736 and $1199 \mathrm{~cm}^{-1}$. Predict the structure of this compound with proper reasoning.

Splitting	δ	Integral ratio
triplet	1.1	3 H
doublet	1.2	6 H
septet	4.8	1 H
quartet	2.3	2 H

Important Spectral Data

Table 1: IR data

Important IR Stretching Frequencies		
Type of bond	Wavenumber $\left(\mathbf{c m}^{-1}\right)$	Intensity
$\mathrm{C} \equiv \mathrm{N}$	$2260-2220$	medium
$\mathrm{C} \equiv \mathrm{C}$	$2260-2100$	medium to weak
$\mathrm{C}=\mathrm{C}$	$1680-1600$	medium
$\mathrm{C}=\mathrm{N}$	$1650-1550$	medium
	~ 1600 and $\sim 1500-1430$	strong to weak
$\mathrm{C}=\mathrm{O}$	$1780-1650$	strong
$\mathrm{C}-\mathrm{O}$	$1250-1050$	strong
$\mathrm{C}-\mathrm{N}$	$1230-1020$	medium
$\mathrm{O}-\mathrm{H}$	$3650-3200$	strong, broad
(alcohol)	$3300-2500$	strong, very broad
$\mathrm{O}-\mathrm{H}$		medium, broad
(carboxylic acid)	$3500-3300$	medium
$\mathrm{N}-\mathrm{H}$	$3300-2700$	
$\mathrm{C}-\mathrm{H}$		

Table 2: Approximate values of chemical shifts for ${ }^{1} \mathrm{H}$ NMR

Type of Proton	Chemical Shift (ppm)	Type of Proton	Chemical Shift (ppm)
$\mathrm{R}-\mathrm{CH}_{3}$	0.9-1.2	$\begin{gathered} \mathrm{X}-\mathrm{CH}_{2} \mathrm{R} \\ (\mathrm{X}: \mathrm{Cl}, \mathrm{Br}, \mathrm{I}) \end{gathered}$	$3.1-3.8$
	$1.2-1.5$	$\mathrm{R}-\mathrm{OH}$	variable, 1 - 5
	$1.4-1.9$	$\mathrm{R}-\mathrm{NH}_{2}$	variable, 1 - 5
	$1.5-2.5$		4.5-6.0
II	2.0-2.6	$\mathrm{Ar}-\mathrm{H}$	6.0-8.5
$\mathrm{Ar}-\mathrm{CH}_{3}$	$2.2-2.5$		$9.5-10.5$
$\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$	$2.5-3.0$		10-13
(H)R-O- CH_{3}	3.3-4.0		

