

Register number:

Date and session:

ST JOSEPH'S UNIVERSITY, BENGALURU-27
 M.SC (MATHEMATICS) - II SEMESTER SEMESTER EXAMINATION: APRIL, 2023
 (Examination conducted in May 2023)
 MT 8221: MEASURE AND INTEGRATION
 (For current batch students only)

Duration: 2 Hours
Max. Marks: 50

1. The paper contains TWO printed pages and ONE part. Attempt any FIVE FULL questions.
2. All multiple choice questions have one or more correct option. Write all the correct options in your answer booklet. True or False questions must be correctly justified.
3. For question 3 answer either parts \underline{a} and b or parts c and d .
4. Calculators are allowed.
5. a) Let E_{1} and $E_{2} \in \mathscr{L}\left(\mathbb{R}^{n}\right)$. Then show that $E_{1} \cup E_{2} \in \mathscr{L}\left(\mathbb{R}^{n}\right)$. Further, if $E_{1} \cap E_{2}=\emptyset$ then show that $m_{*}\left(E_{1} \cup E_{2}\right)=m_{*}\left(E_{1}\right)+m_{*}\left(E_{2}\right)$.
b) True/False: The set $\bigcup_{n=1}^{\infty}\left\{(x, y) \in \mathbb{R}^{2}: y=(n+1) x\right\}$ has measure zero in $\left(\mathbb{R}^{2}, \mathscr{P}\left(\mathbb{R}^{2}\right), \delta_{x_{0}}\right)$ where x_{0} is the origin in \mathbb{R}^{2}.
6. a) Let (X, \mathcal{S}, μ) be a measure space. Show that if $\left\{E_{i}\right\}$ is a countable collection of subsets of X in \mathcal{S} such that $E_{1} \supseteq E_{2} \supseteq E_{3} \cdots$ and $\mu\left(E_{m}\right)<\infty$ for some m then, $\mu\left(\bigcap_{i=1}^{\infty} E_{i}\right)=$ $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)$.
b) Let (X, \mathcal{S}, μ) be a measure space and let $f: \mathbb{X} \rightarrow \mathbb{R}$ be a strictly positive measurable function. Show that the function $\frac{1}{f}$ is measurable.
7. a) Prove Lusin's Theorem: "Let $E \subset \mathbb{R}^{n}$ be a set of finite measure. Let $f: E \rightarrow \mathbb{R}$ be a measurable function. For every $\varepsilon>0$ there exists a measurable set $A_{\varepsilon} \subset E$ such that $m\left(E \backslash A_{\varepsilon}\right)<\varepsilon$ and $\left.f\right|_{A_{\varepsilon}}$ is continuous."
b) Let A and B be two subsets of a measure space X. Which of the following is(are) true?
i. $A \subset B \Longrightarrow \chi_{A} \leq \chi_{B}$
iii. $A \subset B \Longrightarrow \chi_{A} \geq \chi_{B}$
ii. $\chi_{A \cap B}=\min \left\{\chi_{A}, \chi_{B}\right\}$
iv. $\chi_{A \cap B}=\max \left\{\chi_{A}, \chi_{B}\right\}$.

OR

c) Let (X, \mathcal{S}, μ) be a measure space and let ϕ and ψ be simple functions defined on X. Let $a, b \in \mathbb{R}$. Show that $\int_{X}(a \phi+b \psi) d \mu=a \int_{X} \phi d \mu+b \int_{X} \psi d \mu$. Also show that $\left|\int_{X} \phi d \mu\right| \leq \int_{X}|\phi| d \mu$.
d) True/False: A constant function on \mathbb{N} is integrable with respect to the Lebesgue measure but not with respect to the counting measure.
4. a) Prove the Bounded Convergence Theorem: "Suppose $\left\{f_{n}\right\}$ is a sequence of measurable functions that are all bounded by M and supported on a set E of finite measure and $f_{n} \rightarrow f$ almost everywhere. Then, f is almost everywhere bounded, and supported on E and $\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu$."
b) True/False: The function $f: \mathbb{R} \rightarrow[-\infty, \infty]$ defined by $f(x)=\frac{1}{x}$ is integrable on $\left(\mathbb{R}, \mathcal{P}(\mathcal{R}), \delta_{0}\right)$.
5. a) Let (X, \mathcal{S}, μ) be a measure space and let f, g be non-negative measurable functions on X. Let E, F be disjoint measurable subsets of X. Prove that $\int_{E \cup F} f d \mu=\int_{E} f d \mu+\int_{F} f d \mu$. Also prove that if $f \leq g$ then $\int_{X} f d \mu \leq \int_{X} g d \mu$.
b) Let $X=Y=[0,1]$. Give X the Lebesgue measure m and Y the counting measure μ. Let $f(x, y)=1$ if $x=y$ and 0 otherwise. Show that $\int_{X} \int_{Y} f(x, y) d \mu d m \neq \int_{Y} \int_{X} f(x, y) d m d \mu$.
6. a) Prove Minkowski's Inequality: "Let $1 \leq p \leq \infty$. Let f and g be p-integrable. Then $f+g$ is also p-integrable and $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$ ".
b) True/False: $L^{2}(\mathbb{N}) \subseteq L^{1}(\mathbb{N})$ where the measure considered is the counting measure.
7. a) Let (X, \mathcal{S}, μ) be a measure space and $h \in L^{1}(X)$ be a non-negative function. For each $E \in \mathcal{S}$, define $\nu(E)=\int_{E} h d \mu$. Show that ν is a finite measure on \mathcal{S}.
b) Let $[a, b] \subset \mathbb{R}$ and f be a function of bounded variation on $[a, b]$. Show that f is bounded and $|f|$ is of bounded variation.
8. a) Let $f:[a, b] \rightarrow \mathbb{R}$ be an absolutely continuous function such that $f^{\prime}=0$ almost everywhere on $[a, b]$. Show that f is a constant.
b) Show that a Lipschitz continuous function is of bounded variation.

