Registration Number:

Date \& session:

ST JOSEPH'S UNIVERSITY, BENGALURU-27
 M.Sc (MATHEMATICS) - II SEMESTER
 SEMESTER EXAMINATION: APRIL, 2023
 (Examination conducted in May 2023)
 MT 8421 - PARTIAL DIFFERENTIAL EQUATIONS
 (For current batch students only)

Time: 2 Hours
Max. Marks: 50

1. This paper contains ONE printed page.
2. Attempt any FIVE FULL questions.
3. Every question carries TEN marks .
4. a) Find the integral surface of the partial differential equation $(x-y) y^{2} p+(y-x) x^{2} q=\left(x^{2}+y^{2}\right) z$ passing through the curve $x z=a^{3}, y=0$.
b) Classify the given partial differential equation and find its characteristics $y^{2} r-x^{2} t=0$.
5. Solve $y(x+y)(r-s)-x p-y q-z=0$ by reducing it to canonical form.
6. a) Solve $\left(D^{2}-3 D D^{\prime}+2 D^{\prime 2}\right) z=e^{2 x-y}+e^{x+y}$.
b) Solve $x^{2} r-3 x y s+2 y^{2} t+p x+2 q y=x+2 y$.

OR

Solve $(r-s) y+(s-t) x+q-p=0$ using Monge's method.
4. Solve the Dirichlet problem $\nabla^{2} u=0,0<x<1,0<y<1$ subjected to the boundary conditions $u(x, 0)=x(x-1), u(x, 1)=0, u(0, y)=0, u(1, y)=0$.
5. Using Riemann-Volterra method, solve $\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial^{2} z}{\partial y^{2}}$ where $z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ are prescribed along a curve C in the $x y$-plane.
6. Obtain the general solution of three-dimensional heat equation in cylindrical co-ordinate system.
7. Using the method of eigen function expansion, obtain the solution of

$$
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=x^{2} \sin (\pi x)
$$

where $0<x<1, t>0$ subjected to the conditions

$$
\begin{gathered}
u(0, t)=0 \\
u(1, t)=0 \\
u(x, 0)=\pi \\
\frac{\partial u}{\partial t}(x, 0)=2 \pi \sin (2 \pi x) .
\end{gathered}
$$

