Register number:

Date and session:

ST. JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc (MATHEMATICS) - II SEMESTER SEMESTER EXAMINATION: APRIL 2023 (Examination conducted in May 2023)

MT 8521- TOPOLOGY

(For current batch students only)

Time 2 Hours

Max Marks: 50

This paper contains <u>TWO</u> printed page and <u>ONE</u> part. In question 3 answer either part a) or answer parts b) and c).

I. ANSWER ANY FIVE OF THE FOLLOWING.

1. a) Let Y = (-1, 1) be given the subspace topology from \mathbb{R} . Which of the following are open in Y?

i) $\{x: 0 \le |x| < 1\}$ ii) $\{x: 1/2 \le |x| < 1\}$

Give reasons for your answers.

- b) Let X be a topological space. Prove that the following conditions hold:
 - i) X and ϕ are closed.
 - ii) Arbitrary intersection of closed sets are closed.
 - iii) Finite union of closed sets are closed.
- 2. a) Define closure and interior of a set. If $X = \{p, q, r, s\}$ and $\tau = \{X, \phi, \{p\}, \{p, q\}, \{s\}, \{p, s\}, \{p, q, s\}\}$. Find:

i)
$$int(A)$$
 if $A = \{p, q, r\}$.
ii) $cl(B)$ if $B = \{s\}$.
(5m)

b) Show that the function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 5x + 4 is a homeomorphism.

(**3m**)

c) If A is a subspace of X, prove that $j : A \to X$ is continuous. (2m)

(4m)

(6m)

- 3. a) Let X and Y be topological spaces. Let $f : X \to Y$. Prove that the following are equivalent:
 - 1) f is continuous.
 - 2) For every subset A of X, one has $f(\overline{A}) \subset \overline{f(A)}$.
 - 3) For every closed set B of Y, the set $f^{-1}(B)$ is closed in X. (10m)

OR

- b) Show that the set of all invertible $n \times n$ matrices is not a connected subset of the set of all $n \times n$ matrices. (3m)
- c) Prove that the union of a collection of connected sets of X that have a common point is connected. (7m)
- 4. a) Show that (0,1) is not homeomorphic to [0,1). (3m)
 - b) Prove that an open connected subset U of \mathbb{R}^n is path connected. (7m)
- 5. a) Consider $X = \mathbb{R}$ with the standard topology. Check if the following are a cover for \mathbb{R} or not.

i.
$$A = \{(n, n+1)\}, n \in \mathbb{Z}$$
.
ii. $B = \{[n, n+1]\}, n \in \mathbb{Z}$.

Give reasons for your answer.

(4m)

(10m)

- b) Prove that the image of a compact space under a continuous map is compact. (6m)
- 6. State and prove Lebesgue number lemma.
- 7. a) Let X be a toplogical space. Let one point sets in X be closed. Prove that X is normal if and only if given a closed set A and an open set U containing A, there is an open set V containing A such that $\overline{V} \subset U$. (5m)
 - b) Prove that every compact Hausdorff space is normal. (5m)