

Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU- 27 M.Sc MATHEMATICS- IV SEMESTER SEMESTER EXAMINATION: APRIL 2023 (Examination conducted in May 2023) MT 0122: ADVANCED GRAPH THEORY

(For current batch students only)

Duration: 2.5 HoursMax. Marks: 70

- 1. This paper contains **TWO** printed page.
- 2. Answer any SEVEN FULL questions.

1.	1. Prove that, if the line graph G has none of the nine forbidden subgraphs as an induced subgraph, then G does not have $K_{1,3}$ as an induced subgraph and if two odd triangles have a common line, then the subgraph induced by their points is K_4 . [10 marks]			
2.	(a)) Prove that a graph is the line graph of a tree if and only if it is a connected block graph each cut point is on exactly two blocks.	aph in which [5 marks]	
	(b)) Define total graphs. Find the total graph of K_4 and K_5 .	[5 marks]	
3.	(a)) State and prove Euler's formula for planar graphs.	[6 marks]	
	(b)) Show that there exists a graph of order $n \ge 3$ and size $m > 3n - 6$ that contains ne $K_{3,3}$ as a subgraph.	either K ₅ nor [4 marks]	
4.	(a)) State Jordan curve theorem and show that K_5 is non-planar using Jordan curve theorem	m. [6 marks]	
	(b)) Is Petersen graph $G(10, 15)$ planar? Justify your answer.	[4 marks]	
5. Prove that a graph has a dual if and only if it is planar. [10 marks]				
6.	If G	G is a connected vertex-transitive graph, then prove that $\lambda(G) = \delta(G)$.	[10 marks]	
7.	(a)) Define hypercubes using binary sequence and using cartesian product. Draw hyperc and Q_4 .	cubes Q_2, Q_3 [5 marks]	
	(b)) Prove that, for any given vertex x of hypercube Q_n , there exists the unique vertex y distance $d(Q_n; x, y) = n$. Also prove that, there are n internally disjoint (x, y) -paths	such that the of length <i>n</i> . [5 marks]	

8. Prove that the cartesian, the direct, the lexicographic, and the strong product are each associative.

[10 marks]

9. Prove the distance formula for the cartesian product of graphs. [10 marks]

Prove the distance formula for the strong product of graphs. [10 marks]