

Register number:

Date and session:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.Sc (MATHEMATICS) - IV SEMESTER SEMESTER EXAMINATION: APRIL, 2023 (Examination conducted in May 2023) MTDE 0522: Differential Geometry

(For current batch students only)

Duration: $2\frac{1}{2}$ Hours

Max. Marks: 70

- 1. The paper contains two printed pages and one part.
- 2. Answer any **SEVEN FULL** questions.
- 1. a) Let $V = y^2 U_1 x U_3$ and let f = xy and $g = z^3$. Compute the functions V[fg]. [2m]
 - b) Let $v_{\mathbf{p}}$ be the tangent vector to \mathbb{R}^3 with v = (2, -1, 3) and $\mathbf{p} = (2, 0, -1)$ and let $f = e^x \cos y$. Compute $v_{\mathbf{p}}[f]$. [3m]
 - c) Which of the following are 1-forms? In each case ϕ is the function on tangent vectors such that the value of ϕ on (v_1, v_2, v_3) is given by [5m]
 - i) $v_1 v_3$ ii) 2 iii) $p_1 p_3$.
- 2. a) Show that if α is a regular curve in \mathbb{R}^3 , then there exists a reparametrization β of α such that β has unit speed. [5m]
 - b) Find the unit-speed reparametrization of the curve $\alpha(t) = (\cosh t, \sinh t, t)$ based at t=0. [5m]
- 3. a) Show that a regular curve α with $\kappa > 0$ is a cylindrical helix if the ratio τ/κ is a constant.

[5m]

b) Consider the curve
$$\beta(s) = \left(\frac{(1+s)^{3/2}}{3}, \frac{(1-s)^{3/2}}{3}, \frac{s}{\sqrt{2}}\right)$$
 defined on $(-1, 1)$. Show that β has unit speed, and compute T, κ, N of the curve. [5m]

- 4. a) Show that if F is an isometry of \mathbb{R}^3 , then there exists a unique translation T and a unique orthogonal transformation C such that F = TC. [6m]
 - b) In each of the cases decide whether F is an isometry on \mathbb{R}^3 . If so, find its translation and orthogonal parts. Here $\mathbf{p} = (p_1, p_2, p_3)$. [4m]

(i)
$$F(\mathbf{p}) = -\mathbf{p}$$
 (ii) $F(\mathbf{p}) = (p_3 - 1, p_2 - 2, p_1 - 3)$ (iii) $F(\mathbf{p}) = (p_1, p_2, 0)$

- 5. a) Let $\mathbf{x} : \mathbb{R}^2 \to \mathbb{R}^3$ be the mapping $\mathbf{x}(u, v) = (u + v, u v, uv)$. Show that \mathbf{x} is a proper patch. [6m]
 - b) For which values of c is M : z(z-2) + xy = c a surface? [4m]
- 6. a) Show that the surface of revolution $M: (\sqrt{x^2 + y^2} 4)^2 + z^2 = 4$ is a torus. Also, write a parametrization for this surface. [5m]
 - b) Show that the geographical patch of the unit sphere is a one-one parametrization of the sphere except for the poles. [5m]

- 7. a) Let $\mathbf{x} : \mathbf{D} \to \mathbb{R}^3$ be a proper patch on an open subset \mathbf{D} of \mathbb{R}^2 . Pick the correct statement(s) from the options given below:
 - (i) \mathbf{x} is a homeomorphism from \mathbf{D} to $\mathbf{x}(\mathbf{D})$. (iii) $\mathbf{x}(\mathbf{D})$ is an example of a simple surface.
 - (ii) The Jacobian of **x** need not have rank 2 always. (iv) The Jacobian of **x** always has rank 2. [4m]
 - b) Define the quadratic approximation of a surface near a point. Find the quadratic approximation near the origin for the surface $M : z = \log(\cos x) \log(\cos y)$. [4m]
 - c) Suppose $M \in \mathbb{R}^3$ is a surface and $\mathbf{p} \in M$. Let $S_{\mathbf{p}}$ denote the shape operator of M at the point \mathbf{p} . Suppose $\{v_{\mathbf{p}}, w_{\mathbf{p}}\}$ is a linearly independent subset of the tangent space $T_{\mathbf{p}}(M)$ and $H(\mathbf{p}) = 0$, where H denotes the mean curvature of M at \mathbf{p} . Let $K(\mathbf{p})$ denote the Gaussian curvature of M. Pick the correct statement(s) from the options given below.
 - (i) If $K(\mathbf{p}) = 0$, then \mathbf{p} is an umbilic point of M. (iii) If $K(\mathbf{p}) \neq 0$, then $K(\mathbf{p}) > 0$.
 - (ii) If $K(\mathbf{p}) \neq 0$, then \mathbf{p} is not an umbilic point of (iv) If $K(\mathbf{p}) \neq 0$, then $\{S_{\mathbf{p}}(v_{\mathbf{p}}), S_{\mathbf{p}}(w_{\mathbf{p}})\}$ is linearly *M*. [2m]
- 8. a) Let M be a surface in \mathbb{R}^3 . Prove that the shape operator at each point $\mathbf{p} \in M$ is a linear operator on the tangent space $T_{\mathbf{p}}(M)$. [6m]
 - b) Compute the shape operator of the sphere $\Sigma : \{(x, y, z) : x^2 + y^2 + z^2 = r\}.$ [4m]
- 9. Let $M \subset \mathbb{R}^3$ be a surface and $\mathbf{p} \in M$. Define the principal curvatures and principal directions of M at \mathbf{p} . If S is the shape operator of M, prove that the principal curvatures of M are precisely the eigenvalues of S and the principal directions are the corresponding eigenvectors. [10m]

OR

Compute the Gaussian and Mean curvatures for the saddle surface $M: z = xy$.	[10m]
---	-------