ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 M.Sc (MATHEMATICS) - IV SEMESTER
 SEMESTER EXAMINATION: APRIL, 2023

(Examination conducted in May 2023)
MTDE 0522: Differential Geometry
(For current batch students only)
Duration: $2 \frac{1}{2}$ Hours
Max. Marks: 70

1. The paper contains two printed pages and one part.
2. Answer any SEVEN FULL questions.
3. a) Let $V=y^{2} U_{1}-x U_{3}$ and let $f=x y$ and $g=z^{3}$. Compute the functions $V[f g]$.
[2m]
b) Let $v_{\mathbf{p}}$ be the tangent vector to \mathbb{R}^{3} with $v=(2,-1,3)$ and $\mathbf{p}=(2,0,-1)$ and let $f=e^{x} \cos y$. Compute $v_{\mathbf{p}}[f]$.
[3m]
c) Which of the following are 1 -forms? In each case ϕ is the function on tangent vectors such that the value of ϕ on $\left(v_{1}, v_{2}, v_{3}\right)$ is given by
i) $v_{1}-v_{3}$
ii) 2
iii) $p_{1}-p_{3}$.
4. a) Show that if α is a regular curve in \mathbb{R}^{3}, then there exists a reparametrization β of α such that β has unit speed.
b) Find the unit-speed reparametrization of the curve $\alpha(t)=(\cosh t, \sinh t, t)$ based at $\mathrm{t}=0$.
5. a) Show that a regular curve α with $\kappa>0$ is a cylindrical helix if the ratio τ / κ is a constant.
[5m]
b) Consider the curve $\beta(s)=\left(\frac{(1+s)^{3 / 2}}{3}, \frac{(1-s)^{3 / 2}}{3}, \frac{s}{\sqrt{2}}\right)$ defined on $(-1,1)$. Show that β has unit speed, and compute T, κ, N of the curve.
6. a) Show that if F is an isometry of \mathbb{R}^{3}, then there exists a unique translation T and a unique orthogonal transformation C such that $F=T C$.
[6m]
b) In each of the cases decide whether F is an isometry on \mathbb{R}^{3}. If so, find its translation and orthogonal parts. Here $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}\right)$.
(i) $F(\mathbf{p})=-\mathbf{p}$
(ii) $F(\mathbf{p})=\left(p_{3}-1, p_{2}-2, p_{1}-3\right)$
(iii) $F(\mathbf{p})=\left(p_{1}, p_{2}, 0\right)$
7. a) Let $\mathbf{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the mapping $\mathbf{x}(u, v)=(u+v, u-v, u v)$. Show that \mathbf{x} is a proper patch.
[6m]
b) For which values of c is $M: z(z-2)+x y=c$ a surface?
[4m]
8. a) Show that the surface of revolution $M:\left(\sqrt{x^{2}+y^{2}}-4\right)^{2}+z^{2}=4$ is a torus. Also, write a parametrization for this surface.
b) Show that the geographical patch of the unit sphere is a one-one parametrization of the sphere except for the poles.
9. a) Let $\mathbf{x}: \mathbf{D} \rightarrow \mathbb{R}^{3}$ be a proper patch on an open subset \mathbf{D} of \mathbb{R}^{2}. Pick the correct statement(s) from the options given below:
(i) \mathbf{x} is a homeomorphism from \mathbf{D} to $\mathbf{x}(\mathbf{D})$. (iii) $\mathbf{x}(\mathbf{D})$ is an example of a simple surface.
(ii) The Jacobian of \mathbf{x} need not have rank 2 always. (iv) The Jacobian of \mathbf{x} always has rank 2 .
b) Define the quadratic approximation of a surface near a point. Find the quadratic approximation near the origin for the surface $M: z=\log (\cos x)-\log (\cos y)$.
[4m]
c) Suppose $M \in \mathbb{R}^{3}$ is a surface and $\mathbf{p} \in M$. Let $S_{\mathbf{p}}$ denote the shape operator of M at the point \mathbf{p}. Suppose $\left\{v_{\mathbf{p}}, w_{\mathbf{p}}\right\}$ is a linearly independent subset of the tangent space $T_{\mathbf{p}}(M)$ and $H(\mathbf{p})=0$, where H denotes the mean curvature of M at \mathbf{p}. Let $K(\mathbf{p})$ denote the Gaussian curvature of M. Pick the correct statement(s) from the options given below.
(i) If $K(\mathbf{p})=0$, then \mathbf{p} is an umbilic point of M. (iii) If $K(\mathbf{p}) \neq 0$, then $K(\mathbf{p})>0$.
(ii) If $K(\mathbf{p}) \neq 0$, then \mathbf{p} is not an umbilic point of (iv) If $K(\mathbf{p}) \neq 0$, then $\left\{S_{\mathbf{p}}\left(v_{\mathbf{p}}\right), S_{\mathbf{p}}\left(w_{\mathbf{p}}\right)\right\}$ is linearly M. independent.
10. a) Let M be a surface in \mathbb{R}^{3}. Prove that the shape operator at each point $\mathbf{p} \in M$ is a linear operator on the tangent space $T_{\mathbf{p}}(M)$.
b) Compute the shape operator of the sphere $\Sigma:\left\{(x, y, z): x^{2}+y^{2}+z^{2}=r\right\}$.
11. Let $M \subset \mathbb{R}^{3}$ be a surface and $\mathbf{p} \in M$. Define the principal curvatures and principal directions of M at \mathbf{p}. If S is the shape operator of M, prove that the principal curvatures of M are precisely the eigenvalues of S and the principal directions are the corresponding eigenvectors.
[10m]

OR

Compute the Gaussian and Mean curvatures for the saddle surface $M: z=x y$.

