Register Number:

Date:

ST. JOSEPH'S COLLEGE(AUTONOMOUS), BENGALURU -27 B.Sc (MATHEMATICS) - IV SEMESTER SEMESTER EXAMINATION: APRIL 2023 (Examination conducted in May 2023)

MT 422- MATHEMATICS IV

(For current batch students only)

Time: 2 Hours

This paper contains TWO printed pages and THREE parts.

PART A

Answer any SIX of the following.

- 1. Determine whether $\phi : (\mathbb{R}, +) \to (\mathbb{R}^*, \times)$ defined by $\phi(x) = e^x$ is a group homomorphism or not.
- 2. Examine the convergence of the series $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots$
- 3. State D'Alembert's ratio test.
- 4. Determine whether the function $f(x) = \left(\frac{\pi x}{2}\right)^2$ in $0 < x < 2\pi$ is even or an odd function.
- 5. Define gamma function. Find $\gamma(5)$
- 6. Find $\beta(1, 6)$

7. Given the differential equation $\frac{dy}{dx} = x + y$ with y(0) = 1. Find y(0.1) using Euler's method.

8. Construct the finite difference table for the following data

f(x) 0 3 14 69 228 PART B

50

55

60

65

45

х

Answer any THREE of the following.

9. State and prove the First Isomorphism theorem for groups.

[6X 2=12]

Max Marks: 60

[3X 6=18]

- 10. Examine the convergence of the series $\frac{1}{\sqrt{1}+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots$
- 11. State and prove Cauchy's root test.
- 12. Find the root using Secant method for $f(x) = x^3 4x 9$ in the interval (2,3) upto three decimal places.

PART C

Answer any FIVE of the following.

- 13. Obtain the Fourier series expansion for the function $f(x) = x^2$ over $(-\pi, \pi)$
- 14. Obtain the half range Fourier sine series for the function $f(x) = e^{-ax}$ over (0, 1).
- 15. Prove that $\beta(m,n) = \frac{\gamma(m)\gamma(n)}{\gamma(m+n)}$
- 16. (a) Prove that $\gamma(n+1) = n\gamma(n)$
 - (b) Using the trapezoidal rule, evaluate the integral $\int_0^2 e^{x^2} dx$ by taking the step size h = 0.5 [3+3]
- 17. Find the value of y(1925) from the following data

Х	1891	1901	1911	1921	1931
f(x)	46	66	81	93	101

- 18. Determine the value of y(0.1) for the differential equation $\frac{dy}{dx} = y x$ given that y(0) = 2 using the Runge-Kutta fourth order method by taking h = 0.1.
- 19. Evaluate $\int_0^1 \frac{dx}{x^3 + x + 1}$ using Simpson's 3/8th rule by taking the step size h = 1/6.

[5X 6=30]