ST. JOSEPH'S COLLEGE(AUTONOMOUS), BENGALURU -27
 B.Sc (MATHEMATICS) - IV SEMESTER
 SEMESTER EXAMINATION: APRIL 2023

(Examination conducted in May 2023)
MT 422- MATHEMATICS IV
(For current batch students only)
Time: 2 Hours
Max Marks: 60

This paper contains TWO printed pages and THREE parts.

PART A

Answer any SIX of the following.
[6X 2=12]

1. Determine whether $\phi:(\mathbb{R},+) \rightarrow\left(\mathbb{R}^{*}, \times\right)$ defined by $\phi(x)=e^{x}$ is a group homomorphism or not.
2. Examine the convergence of the series $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\ldots \ldots$
3. State D'Alembert's ratio test.
4. Determine whether the function $f(x)=\left(\frac{\pi-x}{2}\right)^{2}$ in $0<x<2 \pi$ is even or an odd function.
5. Define gamma function. Find $\gamma(5)$
6. Find $\beta(1,6)$
7. Given the differential equation $\frac{d y}{d x}=x+y$ with $y(0)=1$. Find $y(0.1)$ using Euler's method .
8. Construct the finite difference table for the following data

x	45	50	55	60	65
$\mathrm{f}(\mathrm{x})$	0	3	14	69	228

PART B
Answer any THREE of the following.
[3X 6=18]
9. State and prove the First Isomorphism theorem for groups.
10. Examine the convergence of the series $\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots .$.
11. State and prove Cauchy's root test.
12. Find the root using Secant method for $f(x)=x^{3}-4 x-9$ in the interval $(2,3)$ upto three decimal places.

PART C

Answer any FIVE of the following.

[5X 6=30]
13. Obtain the Fourier series expansion for the function $f(x)=x^{2}$ over $(-\pi, \pi)$
14. Obtain the half range Fourier sine series for the function $f(x)=e^{-a x}$ over $(0,1)$.
15. Prove that $\beta(m, n)=\frac{\gamma(m) \gamma(n)}{\gamma(m+n)}$
16. (a) Prove that $\gamma(n+1)=n \gamma(n)$
(b) Using the trapezoidal rule, evaluate the integral $\int_{0}^{2} e^{x^{2}} d x$ by taking the step size $h=0.5$
17. Find the value of y (1925) from the following data

x	1891	1901	1911	1921	1931
$\mathrm{f}(\mathrm{x})$	46	66	81	93	101

18. Determine the value of $y(0.1)$ for the differential equation $\frac{d y}{d x}=y-x$ given that $y(0)=2$ using the Runge-Kutta fourth order method by taking $h=0.1$.
19. Evaluate $\int_{0}^{1} \frac{d x}{x^{3}+x+1}$ using Simpson's 3/8th rule by taking the step size $h=1 / 6$.
