Register Number:
Date \& Session:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 B.Sc. Mathematics - VI SEMESTER
 SEMESTER EXAMINATION: APRIL 2023

(Examination conducted in May 2023)

MT 6118 - MATHEMATICS VII

(For current batch students only)

Time: $2 \frac{1}{2}$ hrs
Max Marks: 70
This paper contains TWO printed pages and THREE parts.

Part-A

Answer any FIVE of the following.

$5 \times 2=10$

1. Is it true that the set of all rational numbers \mathbb{Q} is a vector space over the field of real numbers \mathbb{R} under the usual addition and multiplication? Justify your answer.
2. Check whether $x+1 \in \operatorname{span}(S)$, where $S=\left\{x^{2}+2 x, x^{2}-1\right\}$ is a subset of the vector space $P_{2}(\mathbb{R})$.
3. Give the definitions of a basis and the dimension for a vector space $V(F)$.
4. Show that the mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{3}, 3 a_{2}\right)$ is a linear transformation from the vector space \mathbb{R}^{3} to the vector space \mathbb{R}^{2}.
5. Let B_{1} and B_{2} be the standard bases for the vector spaces \mathbb{R}^{2} and \mathbb{R}^{3} respectively. Find the matrix $[T]_{B_{1}}^{B_{2}}$ of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y)=(x-2 y, y-x, 3 x+5 y)$.
6. Solve: $\frac{d x}{x^{-1} y^{2} z}=\frac{d y}{x z}=\frac{d z}{y^{2}}$
7. Form the partial differential equation by eliminating the arbitrary constants c and α from $x^{2}+y^{2}=(z-c)^{2} \tan ^{2} \alpha$.
8. Find the particular Integral of the partial differential equation $\left(D^{2}-2 D D^{\prime}-3 D^{\prime 2}\right) z=\sin (2 x+y)$.

Part-B

Answer any SEVEN of the following.

$$
7 \times 6=42
$$

9. State and prove the necessary and sufficient conditions for a non-empty subset W of a vector space $V(F)$ to be a subspace of V.
10. Let S_{1} and S_{2} be two subsets of a vector space $\mathrm{V}(\mathrm{F})$. Prove that $\operatorname{span}\left(S_{1}\right)=\operatorname{span}\left(S_{2}\right)$ if and only If $S_{1} \subseteq \operatorname{span}\left(S_{2}\right)$ and $S_{2} \subseteq \operatorname{span}\left(S_{1}\right)$. If $S_{1}=\left\{x^{2}+x+1, x^{2}\right\}, S_{2}=\left\{x+1,3 x^{2}\right\}$ and $V(F)=P_{2}(\mathbb{R})$, then show that $\operatorname{span}\left(S_{1}\right)=\operatorname{span}\left(S_{2}\right)$.
11. (i) Let V be a vector space over a field F and S be a linearly independent subset of V . Let $x \in V$ be such that $x \notin S$. Prove that $S \cup\{x\}$ is linearly dependent if and only if $x \in \operatorname{span}(S)$.
(ii) Verify whether $S=\{(1,1,0),(1,0,1),(0,1,1)\}$ is a linearly dependent subset of the vector space \mathbb{F}^{3}, where \mathbb{F} is a field of characteristic 2.
12. Prove that a subset $B=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ of a vector space $\mathrm{V}(\mathrm{F})$ is a basis for V if and only if each vector in V can be uniquely expressed as a linear combination of the vectors of B.
13. (i) Find a basis and the dimension for the subspace W of the vector space \mathbb{R}^{4}, where

$$
W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{R}^{4} \mid a_{1}+2 a_{4}=0, a_{2}=a_{3}\right\} .
$$

(ii) Find the dimension of the subspace spanned by the subset S of the vector space $M_{2}(\mathbb{R})$,

$$
\text { where } S=\left\{\left(\begin{array}{cc}
1 & -3 \tag{3+3}\\
1 & 2
\end{array}\right),\left(\begin{array}{cc}
1 & -9 \\
4 & 1
\end{array}\right),\left(\begin{array}{cc}
2 & 6 \\
-4 & 6
\end{array}\right)\right\} .
$$

14. Define a linear transformation. Show that the subset $\{(1,2),(-2,1)\}$ is a basis for \mathbb{R}^{2}. Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $T(1,2)=(2,7,-8)$ and $T(-2,1)=(1,1,1)$.
15. Let V and W be vector spaces over the same field F and the dimension of V be finite. For any linear transformation $T: V \rightarrow W$, prove that nullity $(T)+\operatorname{rank}(T)=\operatorname{dim}(V)$.
16. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ be a linear transformation defined by $T(f(x))=\frac{d}{d x}(f(x))+6 \int_{0}^{x} f(t) d t$. Find the range space and the rank of T . Show that T is one-to-one using the Rank-Nullity theorem.
17. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear operator defined by $T(a, b)=(3 a-b, a+3 b)$, and let $B_{1}=\{(1,1),(1,-1)\}$ and $B_{2}=\{(2,4),(3,1)\}$ be the ordered bases for \mathbb{R}^{2}. Then
(i) find the change of coordinates matrix Q that changes B_{2} coordinates into B_{1} coordinates, (ii) compute $[T]_{B_{1}}$, and (iii) find $[T]_{B_{2}}$ using $[T]_{B_{1}}$ and Q.

Part-C

Answer any THREE of the following.

18. Verify the condition for integrability and solve: $3 x^{2} d x+3 y^{2} d y-\left(x^{3}+y^{3}+e^{2 z}\right) d z=0$
19. Form the partial differential equation by eliminating the arbitrary functions f and g in

$$
z=\frac{1}{x}[f(x-a t)+g(x+a t)] .
$$

20. Find the complete solution of $\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z$.
21. Solve by Charpit's method: $\left(p^{2}+q^{2}\right) y=q z$
22. Solve the partial differential equation: $\left(2 D^{2}-D D^{\prime}-3 D^{\prime 2}\right) z=5 e^{x-y}$
