(For current batch students only)

Time: 2 ½ Hours
Max Marks: 70
This paper contains TWO printed pages and THREE parts.

PART-A

Answer any FIVE of the following questions.
(5X2=10)

1. Evaluate $\int_{c}(x d y-y d x)$ along the curve $y=x^{2}$ from origin to $(2,2)$.
2. Evaluate $\int_{0}^{b} \int_{0}^{a}\left(x^{2}+y^{2}\right) d x d y$.
3. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3}(x y z) d z d y d x$.
4. State Green's theorem in the plane.
5. Using Gauss divergence theorem show that $\iint_{S} r . n d s=3 V$ where V is the volume of the space bounded by the surface S and $r^{2}=x^{2}+y^{2}+z^{2}$.
6. Find the Laplace transform of $(1+t)^{2}$.
7. If $L[f(t)]=F(s)$ then show that Laplace transform of $e^{a t}[f(t)]=F(s-a)$.
8. State convolution theorem.

PART-B

Answer any SEVEN of the following questions.

9. Show that $\int_{c}(2 x y) d x+\left(x^{2}+2 y z\right) d y+\left(y^{2}+1\right) d z$ is independent of path along the curve c leading from the origin to the point $(1,1,1)$ and hence evaluate.
10. Evaluate $\iint_{R} x^{2} y^{2} d x d y$ where R is the triangular region with vertices $(0,0),(2,0)$ and $(2,3)$.
11. Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} x y d y d x$ by changing the order of integration.
12. Evaluate $\iint x y d x d y$ over the positive quadrant bounded by the circle $x^{2}+y^{2}=1$.
13. Find the surface area of the sphere $x^{2}+y^{2}+z^{2}=4$ using double integration.
14. Evaluate $\iiint_{R} \frac{d x d y d z}{(x+y+z)^{3}}$ where R is the region bounded by the coordinate planes and the plane $x+y+z=1$.
15. Verify Green's theorem in the plane for $\oint_{c}\left(x y+y^{2}\right) d x+x^{2} d y$ where c is the closed curve bounded by $y=x$ and $y=x^{2}$.
16. State Gauss divergence theorem and evaluate using Gauss divergence theorem for $\vec{F}=2 x y \hat{\imath}+y z^{2} \hat{\jmath}+x z \hat{k}$ over the rectangular parallelepiped bounded by the planes $x=0, y=0, z=0, x=1, y=2, z=3$.
17. State and prove Stoke's theorem.

PART-C

Answer any TWO of the following questions.

18. Find the Laplace transform of the function $t^{2} \cos a t$.
19. A periodic function of period $\frac{2 \pi}{\omega}$ is defined by $f(t)=\left\{\begin{array}{ll}\sin \omega t, & 0 \leq t \leq \frac{\pi}{\omega} \\ 0, & \frac{\pi}{\omega} \leq t \leq \frac{2 \pi}{\omega}\end{array}\right.$, where ω is a constant. Show that $L\{f(t)\}=\frac{\omega}{\left(s^{2}+\omega^{2}\right)\left(1-e^{\frac{-s \pi}{\omega}}\right)}$.
20. Find the inverse Laplace transform of the function $\frac{s}{s^{2}+s-2}$.
21. Verify convolution theorem for the functions $f(t)=t$ and $g(t)=e^{t}$.
22. Using Laplace transform method solve $\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+4 y=e^{-t}$, given that $y(0)=0, y^{\prime}(0)=0$.
