Registration Number:

Date & Session

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU -27 B.Sc. Physics–VI SEMESTER SEMESTER EXAMINATION: APRIL 2023 (Examination conducted in May 2023) PH 6118 – Solid State and Statistical Physics (For current batch students only)

Time: 2 ½ Hours	Max Marks: 70
This paper contains _2_ printed pages and _3_ parts	
PART-A	
Answer any FOUR of the following:	4 x 10 =40
1. a) Describe the method of producing X-rays using Coolidge tube.	
b) Explain various symmetry elements in simple cubic crystal.	(5+5)
2. a) Obtain an expression for the electrical conductivity of metals based on the	
free electron theory and hence arrive at Ohm's law.	
b) With graphical representation explain Mosley's law.	(7+3)
3. a) Derive an expression for carrier concentration in conduction band for an	
intrinsic semiconductor. b) Explain in brief the concept of effective mass.	(8+2)
b) Explain in bher the concept of enective mass.	(0+2)
4. a) Deduce an expression for specific heat of solids based on Einstein's the	
b) Discuss the above results at low and high temperatures.	(6+4)
5. a) Write the expression for Fermi-Dirac distribution function and arrive at an	ו
expression for Fermi energy at zero Kelvin.	
b) Explain the factors affecting Doppler broadening.	(7+3)
6. a) Derive Bose-Einstein distribution law.	
b) Compare Maxwell-Boltzmann statistics and Fermi – Dirac statistics.	(7+3)
PART - B	
Solve any FOUR of the following:	(4 x 5 = 20)
7. Calculate the glancing angle on the plane (212) of a cube of a rock salt	
(a =2.81Å) Corresponding to second order diffraction maximum for the	
X-rays of wavelength 0.81Å.	
0. Coloulate the mobility of electrons is conner accuming that each star	

8. Calculate the mobility of electrons in copper assuming that each atom contributes one electron for conduction. Resistivity of copper =1.7 x $10^{-8} \Omega$ m Given density of copper = 8.94×10^3 kg/m³ and atomic weight = 63.5 gm wt.

- X-rays of wavelength 0.3Å undergoes a 60° Compton scattering. Find the wavelength of the scattered photon and energy of the electron after scattering.
- 10. A sample of P-type germanium block with donor density 10²²/m³ is used in Hall effect experiment in which a magnetic field of 0.5T is used and a current of density 5 A/m² is passed. If the thickness of the sample is 4 mm, find the Hall coefficient and Hall voltage developed.
- 11. A system consists of 5 particles arranged in two compartments. The first compartment is divided into 6 cells and the second into 8 cells. The cells are of equal size. Calculate the number of microstates in the macro state (2,3) if the particles obey (a) M-B statistics and (b) Fermi Dirac statistics.
- 12. There are about 3x10²⁸ electrons per cubic meter in sodium. Calculate Fermi energy and Fermi velocity.

PART – C

13. Answer any **FIVE** of the following:

(5 x 2 = 10)

- a) Calculate the probability, that in tossing a coin 5 times, we get 3 heads and 2 tails.
- b) Distinguish between unit cell and primitive cell.
- c) Determine the intercepts made by the crystal plane (6 4 2) on the Crystallography axis.
- d) Is photon a fermion or a boson? Justify
- e) What is the basic principle behind magnetic levitation?
- f) Explain the physical significance of Fermi level.