Registration Number:

Date & Session

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU -27 B. Sc. (Statistics)– IV SEMESTER SEMESTER EXAMINATION: APRIL 2023 (Examination conducted in May 2023) ST 422 – Statistical Inference I (For current batch students only)

Time: 2 Hours

Max Marks: 60

3 X 5 = 15

5 X 5 = 25

This paper contains TWO printed pages and THREE parts

<u> PART – A</u>

I. Answer any <u>FIVE</u> of the following

- 1. Define location scale family with one example.
- 2. What is the difference between estimate and estimators?
- 3. State Neymann Factorization Theorem.
- 4. If $X \sim U(0, \theta)$, derive the maximum likelihood estimator (MLE) for the parameter.
- 5. Give the procedure of construction of confidence interval using pivotal quantity method.
- 6. Define Simple hypothesis and Composite Hypothesis with example.
- 7. Explain the concept of acceptance region and rejection region with the help of graph.

<u> PART – B</u>

II. Answer any <u>FIVE</u> of the following

- 8. Define consistency. State the sufficient conditions for consistency. Show that the sample variance, $s_n^2 = \frac{1}{n} \sum_{i=1}^{n} (x \bar{x})^2$ is consistent with the population variance, σ^2 of a normal population.
- 9. Obtain the MVUE for σ^2 in the normal population $N(\mu_0, \sigma^2)$.
- 10. Find the MLE for the parameter λ of a Poisson distribution on the basis of sample of size n. Also obtain the MLE of $5\lambda^3 + 3\lambda^2 - 7\lambda + 8$.
- 11. Derive the confidence interval for difference in proportion with usual notations.
- 12. Derive the confidence interval for population variance when mean is unknown.
- 13. Let p be the probability that a coin will fall, head in single toss. In order to test the hypothesis $H_0: p = \frac{1}{2}$. The coin is tossed 6 times and H_0 is rejected if more than 4 heads are obtained. Find the size of the test. If $H_1: P = \frac{1}{2}$ find the power of the test.
- 14. Write a note on different types of tests based on critical region.

ST 422_A_23

PART – C

III. Answer any <u>TWO</u> of the following

- 15. A) Let x₁, x₂, x₃ be a random sample of size n = 3 taken from a normal population with mean μ and variance σ². Also let μ̂₁ = x₁+2x₂+3x₃/6 and μ̂₂ = x₁+x₂+x₃/3 be two estimators of μ. (a) Are μ̂₁ and μ̂₂ unbiased? (b) Compare the efficiency of μ̂₁ with respect to μ̂₂.
 B) Let x₁, x₂ be independent observations from a Poisson distribution with mean α. Show that x₁ + x₂ is sufficient for α. (6+4)
- 16. A) Let x₁, x₂, ... x_n be identically independently distributed B(m, p) random variables, where m and p are unknown. Obtain moment estimators for both m and p.
 B) Derive 100(1 α) % confidence interval for population correlation coefficient. (4+6)
- 17. A) Explain different types of errors involved testing of hypothesis with example. Deduce the relation between Type II Error and Power of the test.
 - B) Show that maximum likelihood estimator and method of moment estimator of p, whenX ~ Geometric (p) are equal. (5+5)

10 X 2 = 20