ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 M.A. ECONOMICS- I SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2019 EC 7418: MATHEMATICAL METHODS FOR ECONOMISTS

This question paper has 2 printed pages and 3 parts
Time: 2.5 Hours

Maximum Marks-70

Part A: Answer any 5 of the following questions

1. Find the total derivative $d z / d t$, given $z=x^{2}-8 x y-y^{3}$, where $x=3 t$ and $y=1-t$.
2. Find the inverse of the matrix

$$
A=\left(\begin{array}{lll}
2 & 4 & 5 \\
0 & 3 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

3. Given $y=3 x^{3}-6$, examine the geometric shape of the function, if $x>0$.
4. Which investment earns more interest: Rs. 10000 at 6.5% interest compounded quarterly for twenty years, or Rs. 10000 at 5.5% interest compounded continuously for 15 years? Explain.
5. Evaluate the indefinite integral of $\int\left(x^{2}+2 x+1\right) d x$
6. Obtain dy/dx for $y^{3}+4 x^{3}+2 y^{2} x+3 y x^{2}=0$.
7. Define Nash equilibrium.

Part B. Answer any three of the following:
8. Solve for $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} using Cramer's rule in the system of equations denoted by:

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=0 \\
12 x_{1}+2 x_{2}-3 x_{3}=5 \\
3 x_{1}+4 x_{2}+x_{3}=-4
\end{gathered}
$$

9. a) A consumer has the utility function $U=x^{\alpha} y^{\beta}$, such that $0<\alpha<1$ and $0<\beta<1$. Show that there is diminishing marginal utility to increased consumption of either commodity.
b) The demand curves of commodities x and y are given by: $P_{x}=6-0.8 q_{x}$ and $P_{y}=6-$ $0.4 q_{y}$ respectively. Show that at same price ($\mathrm{P}_{\mathrm{x}}=\mathrm{P}_{\mathrm{y}}=2$), the two curves have the same elasticity of demand.
10. Given $\mathrm{Q}=\mathrm{AK}^{\alpha} \mathrm{L}^{1-\alpha}$, check homogeneity of the function, verify Euler's theorem and calculate elasticity of substitution.
11. a) Check Walras and Marshall stability condition for the given system of equations:
$\mathrm{Q}_{\mathrm{d}}=4-2 \mathrm{P}$ and $\mathrm{Q}_{\mathrm{s}}=2+2 \mathrm{P}$.
b) Consider a multiple-plant monopolist who produces two products x_{1} and x_{2}, whose revenue function is given by $R=50 x_{1}+500 x_{2}-x_{1}{ }^{2}-x_{2}{ }^{2}-x_{1} x_{2}$ and the two cost functions are $C_{1}=3 x_{1}{ }^{2}+33$ and $C_{2}=4 x_{2}{ }^{2}+44$. Find the maximum profit and the quantities that the firm can make.
12. Given the following demand and cost functions $P=250-3 q$ and $C=3 q+5 q^{2}$ respectively, find the profit maximising price and output. How would the firm adjust its price and output, if a tax of Rs. 4 per unit of output be imposed on the firm?

Part C. Answer any two of the following: $15 \times 2=30$
13. a) Let the technological coefficient matrix (A) and the final demand vector (D) are given by:

$$
\begin{array}{llll}
0.2 & 0.3 & 0.2 & 10
\end{array}
$$

The coefficient matrix, $\mathrm{A}=\begin{array}{lll}0.4 & 0.1 & 0.2\end{array}$ and the final demand vector, $\mathrm{D}=5$
$\begin{array}{lll}0.1 & 0.3 & 0.2\end{array}$
6
Find the corresponding output levels of three industries.
b) The MR function is given by $R^{\prime}(x)=28-15 x+2 x^{2}$. Find the TR function and the demand function.
14. a) A firm produces two products X and Y. The profits per unit of X and Y are Rs. 5 and Rs. 6 respectively. Each product passes through two processes. Product X requires 1 hour of process-I and 2 hours of process-II per unit. Product Y requires 1 hour of process-I and 3 hours of process-II per unit. The firm has a capacity of 5 hours of process-I and 12 hours of process-II. Determine the optimum product-mix of the firm if the objective of the firm is to maximise total profit.
b) Solve the game whose payoff matrix is given by:

Player B

15. a) If the production function is of the form $q=8 x_{1}{ }^{1 / 2}+20 x_{2}{ }^{1 / 2}$. and if $r_{1}=1, r_{2}=5$, derive the equation of the expansion path.
b) Assume that the market demand is $\mathrm{P}=100-0.5 \mathrm{X}$ and the two colluding firms have costs given by $\mathrm{C}_{1}=5 \mathrm{X}_{1}$ and $\mathrm{C}_{2}=0.5 \mathrm{X}_{2}{ }^{2}$. Find the cartel quantities and profit.

