ST.JOSEPH'S UNIVERSITY, BENGALURU -27
 M.Sc. (PHYSICS) - II SEMESTER
 SEMESTER EXAMINATION: APRIL 2023

(Examination Conducted in May 2023)
PH 8421-Quantum Mechanics-I
Time: 2 hours
Maximum marks: 50
This question paper has 2 printed pages and 2 parts

PART A

Answer any FIVE of the following questions. Each question carries 7 marks. $\quad[5 \times 7=35$]

1. (a) Calculate the expectation value of position and momentum of the $\mathrm{n}^{\text {th }}$ stationary state of an infinite square well potential.
(b) For an infinite potential well, show that for each energy eigenvalue, there exists two momentum states. Explain.
2. Solve the azimuthal part of Schrodinger's wave equation for the hydrogen atom using spherical polar coordinates and arrive at the associated Legendre function.
3. Solve the radial equation of the hydrogen atom and arrive at the spherical Bessel function and spherical Neumann function of the order l where l is the azimuthal quantum number. [7]
4. (a) Using the Rodrigues formula obtain the first three Hermite polynomials for a quantum harmonic oscillator.
(b) Prove that conservation of distinguishable states, i.e., two states are distinguishable if they are orthogonal, implies that the time evolution of states have to be unitary.
5. (a) How does the expectation value of an operator change with respect to time according to Schrodinger picture?
(b) Evaluate $\frac{d\langle x\rangle}{d t}$, given that the potential is independent of time.
6. Prove that $\left[b, b^{\dagger}\right]=1$ and hence demonstrate that the Hamiltonian $H=\frac{\hbar \omega}{2}\left(b b^{\dagger}+b^{\dagger} b\right)$ can be reduced to $H=\hbar \omega\left(b b^{\dagger}+1 / 2\right)$ Given:- $b=\left(\frac{m \omega}{2 \hbar}\right)^{1 / 2}\left(x+\frac{i p}{m \omega}\right), b^{\dagger}=\left(\frac{m \omega}{2 \hbar}\right)^{1 / 2}\left(x-\frac{i p}{m \omega}\right)$ where x, p are the position and momentum operators respectively.
7. If the total angular momentum $\vec{J}=\vec{J}_{1}+\vec{J}_{2}$ and if it satisfies the commutation relations, given in short form as $\left[J_{k}, J_{l}\right]=i \hbar \epsilon_{k, l, m} J_{m}$, show that $\left[J^{2}, J_{z}\right]=0$ and $\left[J^{2}, J_{1}^{2}\right]=0$

PART B

Answer any THREE of the following questions. Each question carries 5 marks. [$3 \times 5=15$]
8. A particle of mass moves in a three-dimensional box of sides a, b, c. If the potential is zero inside and infinity outside the box, find the energy eigenvalues and eigenfunctions
9. A particle of mass m confined to move in a potential $V(x)=0$ for $0 \leq x \leq a$ and $V(x)=\infty$ otherwise. The wave function of the particle at time $t=0$ is $\psi(0)=A\left(2 \sin \left(\frac{\pi x}{a}\right)+\sin \left(\frac{3 \pi x}{a}\right)\right)$. Normalise the wavefunction.
10. If $b \psi_{0}=0$, where ψ_{0} is the ground state of the quantum harmonic oscillator, and $b=\left(\frac{m \omega}{2 \hbar}\right)^{1 / 2}\left(x+\frac{i p}{m \omega}\right)$, the annihilation operator, calculate the normalized value of ψ_{0}.
11. If $j=\frac{1}{2}$, what are the possible values of m ?. Find the matrix form of J_{+}and J_{-}operators.

