Registration Number:

Date & Session:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU -27

M.Sc. Physics – IV SEMESTER

SEMESTER EXAMINATION: April 2023

PH0120/PH0122 – Solid State Physics

Time: 2 ¹/₂ Hours

Max Marks: 70

This paper contains TWO printed pages and TWO parts

PART-A

Answer any <u>FIVE</u> questions. Each question carries <u>TEN</u> Marks.

[5 x 10 = 50]

1. (a). Define reciprocal lattice. Show that the reciprocal lattice for a body centred cubic is a face centred cubic.

(b). In a crystal, a plane cuts intercepts of 2a, 3b and 6c along three crystallographic axes. Determine the Miller indices of the plane.

(c). Draw the three Brillouin zones for a two-dimensional square lattice. [5+3+2]

- 2. Sate Dulong- Petit's law and show how the departure from this law at lower temperatures has been explained by Einstein theory.
- 3. (a). Obtain the expression of Lorentz number on the basis of quantum theory. Compare it with the one predicted on the basis of classical theory.
 - (b). Demonstrate the Fermi- Dirac distribution function for T> 0K and T = 0k.

(c). With a neat sketch, describe the intrinsic and extrinsic semiconducting properties of silicon using band and bond model. [4+2+4]

- 4. Obtain an expression for the local electric field acting at an atom in SI system.
- 5. Draw a typical B-H curve for a ferromagnetic material and explain the different stages of magnetization process on the basis of domain theory.
- 6. (a). Using Langevin's theory, obtain an expression for diamagnetic susceptibility.
 (b). Compare paramagnetic and ferromagnetic substances with necessary examples and diagrams. [7+3]
- 7. Explain the single-particle tunneling effect for the given system using the current-voltage (I-V) curve. (i). Metal- Insulator-Metal, (ii). Metal-Insulator-superconductor and
 - (iii). Superconductor-Insulator-Superconductor (SIS) system.
 - (b). Prove that superconductors have perfect diamagnetic nature using Meissner effect. [7+3]

PART-B

Answer any <u>FOUR</u> questions. Each question carries <u>FIVE</u> Marks.

[4 x 5 = 20]

- 8. A parallel plate capacitor consists of 2 plates each of area 5 x 10⁻⁴ m². They are separated by a distance of 1.5 x 10⁻³ m and filled with a dielectric of relative permittivity
 6. Calculate the charge on the capacitor if it is connected to a 100 volts DC supply.
- 9. Calculate the electronic polarizability of an isolated Se atom. The atomic radius of an Se atom is 0.12 nm.
- 10. Calculate the steady state transfer rate (in Jm⁻²s⁻¹) through a sheet of cooper 10 mm thickness if there is a temperature drop from 823 to 773K across the sheet.
- 11. A magnetic field of 1800 ampere/metre produces a magnetic flux of 3 x 10⁻⁵ weber in an iron bar of cross sectional area 0.2 cm². Calculate permeability.
- 12. The penetration depth of Mercury at 3.5 K is about 750 Å. Estimate the penetration depth at 0 K. Also calculate the superconducting electron density.
- 13. Superconducting tin has a critical temperature of 3.7 K at magnetic field and a critical field of 0.0306 Tesla. Find the critical field at 2K.

Speed of light in vacuum (c)	2.997925 x 10 ⁸ ms ⁻¹
Charge of electron (e)	1.6021 x 10 ⁻¹⁹ C
Rest mass of electron (m)	9.109 x 10 ⁻³¹ kg
Atomic mass unit (m _u)	1.6604 x 10 ⁻²⁷ kg
Electron radius (r _e)	2.828 x 10 ⁻¹⁵ m
1 Angstrom unit (Å)	10 ⁻¹⁰ m
Avogadro's number (N _A)	6.02252 x 10 ²⁶ kmol ⁻¹
Boltzmann constant (k _B)	1.38054 x 10 ⁻²³ jK ⁻¹
Thermal energy at 300K (k _B T)	0.0258 J
Planck's constant (h)	6.626 x 10 ⁻³⁴ Js
Permeability of free space (μ_0)	4π x 10 ⁻⁷ Hm ⁻¹
Permittivity of free space (ϵ_0)	8.854 x 10 ⁻¹² Fm ⁻¹
Rydberg constant for Hydrogen (R _H)	1.0967758 x 10 ⁷ m ⁻¹
Universal gas constant (Ru = N _A k _B)	8.3143 x 10 ³ Jkmol ⁻¹ K

List of Physics Constants