Reg. No.:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE - 27
 M.Sc. CHEMISTRY- I SEMESTER
 SEMESTER EXAMINATION - OCTOBER 2019
 CH 7318- PHYSICAL CHEMISTRY - I (QUANTUM CHEMISTRY)

Time: $\mathbf{2 ~}^{1 / 2}$ hours
Max. Marks: 70
This question paper has two printed pages and three parts

PART A

Answer any SIX of the following:

1. Position and linear momentum of a particle was measured simultaneously. If the uncertainty in position was 100 nm , calculate the minimum uncertainty in linear momentum. (Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$)
2. Plot $\mathrm{R}(\mathrm{r})$ vs r curves for $1 \mathrm{~s}, 2 \mathrm{~s}$ and 3 p orbitals of hydrogen atom.
3. State variation theorem.
4. Write the Slater determinant for $\mathrm{C}($ atomic $\mathrm{no}=6)$ in diagonalized form.
5. Give the generalized quantum mechanical definition of angular momentum.
6. Explain Born-Oppenheimer approximation qualitatively (without mathematical details).
7. What is the fundamental difference between molecular orbital theory and valence bond theory of chemical bonding?
8. The energies of π-MOs of cyclobutadiene are $\alpha+2 \beta, \alpha, \alpha$ and $\alpha-2 \beta$. If the energy of the bonding π-MO of ethylene is $\alpha+\beta$, calculate the delocalization energy of cyclobutadiene.

PART B

Answer any FOUR of the following:
$12 \times 4=48$
9. a) Show that the eigen functions of a Hermitian operator are orthogonal to each other.
b) What is the physical significance of the quantum mechanical state function, ψ ? Based on this significance, state the conditions for ψ to be well-behaved.
c) State the postulates of quantum mechanics. Show that the time-dependent Schrödinger equation is not needed to get the energy of the system, provided the state functions are chosen to be stationary functions.
10. a) The solutions of Schrödinger equation for a particle of mass m in a 1 D -potential well of length L are $\psi=\sqrt{2 / L} \sin (n \pi x / L)$ and $E=n^{2} h^{2} / 8 m L^{2}$, where $n=1,2,3, \ldots$ Solve the Schrödinger equation for the same particle in a 3D-potential well of lengths L_{x}, L_{y} and L_{z} along x, y and z respectively to get normalized wave functions and energy of the particle. Plot (to scale) the first six energy levels when $L_{x}=L_{y}=L_{z}$. Indicate degeneracies where applicable.
b) Given the potential energy of a harmonic oscillator, $V=2 \pi^{2} v^{2} m x^{2}$, set up the Schrödinger equation for a particle of mass m executing harmonic oscillation along x .
Show that the solutions for this equation are $\psi=N H_{n}(y) \exp \left(-y^{2} / 2\right)$, where $H_{n}(y)$ is Hermite polynomial; $y=\sqrt{\beta} \mathrm{x}$ and $\beta=4 \pi^{2} v \mathrm{~m} / \mathrm{h}$.
11. a) Evaluate the spherical harmonics, $\psi_{\ell, \mathrm{M}}(\theta, \phi)$, for $\ell=0, \mathrm{M}=0$; and $\ell=1, \mathrm{M}=-1$.
b) The solutions of the ϕ, θ and r - equations of H -like atoms are:
$F(\phi)=N_{1} \exp (i M \phi) ; P(\theta)=N_{2}\left(1 / 2^{l} . l!\right)\left(1-\cos ^{2} \theta\right)^{\frac{|M|}{2}} \frac{d^{(l+|M|)}}{d(\cos \theta)^{(l+|M|)}}\left(\cos ^{2} \theta-1\right)^{l}$;
$R(r)=N_{3} \rho^{l} \exp (-\rho / 2) \frac{d^{(2 l+1)}}{d \rho^{(2 l+1)}}\left\{\exp (\rho) \frac{d^{(n+l)}}{d \rho^{(n+l)}}\left[\rho^{(n+l)} \exp (-\rho)\right]\right\}$, where $\rho=\frac{2 Z r}{n a_{0}}$.
Arrive at the allowed values of the quantum numbers, n, l and M and the relationships between these quantum numbers.
c) For a general system, whose Hamiltonian is $\widehat{H}_{0}+\lambda \widehat{H}^{\prime}$, where \widehat{H}^{\prime} is the perturbation operator, derive the expression for the first order correction term in energy. $\quad(4+4+4)$
12. a) Employing Hückel molecular orbital theory, get the π-MOs and the π-energy level diagram of allyl system. Show that the allyl cation and allyl anion are equally stable.
b) Describe, in brief, Hartree's self-consistent field (SCF) method for multielectron atoms. How does Hartree-Fock SCF method improve the above method? (6+6)
13. a) Given $\left.k_{j} \geq k_{m}^{2} ; \hat{J}^{2} \widehat{J}_{+/-} \phi\right)=k_{j}\left(\hat{J}_{+/-} \phi\right) ; \hat{J}_{z}\left(\hat{J}_{+/-} \phi\right)=\left(k_{m} \pm \hbar\right)\left(\hat{J}_{+/-} \phi\right)$, where k_{j} and k_{m} are the eigen values of \hat{J}^{2} and \hat{J}_{z} respectively, arrive at the eigen values of the operators $\widehat{J^{2}}$ and $\widehat{J_{Z}}$ when the nature of the eigen functions, ϕ, are not known.
b) Find the Russel-Saunders term symbols for the excited states of Be with the electronic configuration $1 s^{2} 2 s^{1} 2 p^{1}$.
c) Taking the trial MO function for H_{2}^{+}to be a linear combination of two $\mathrm{H}-1$ s functions and employing molecular orbital theory, arrive at the secular equations. (Need not solve the secular equations)
$(4+4+4)$
14. a) Build the antisymmetric MO spin-orbital functions of the excited state of H_{2} molecule. b) Discuss the Heitler-London treatment of H_{2} molecule based on valence bond theory. Show how the initial trial function was improved through linear combination. What is the physical significance of this linear combination?
$(4+8)$

PART C

Answer any TWO of the following:

$$
5 \times 2=10
$$

15. a) Calculate the radii of the nodal surfaces of the 2 s orbitals of (i) H and (ii) Li^{2+} in atomic units. What is the physical significance of these results?

$$
\left[\psi_{2 s}=\frac{1}{4 \sqrt{2 \pi}} Z^{3 / 2}(2-Z r) \exp \left(-\frac{Z r}{2}\right)\right]
$$

b) Which of the following functions is/are eigen function(s) of the linear momentum operator along x ?
(i) $\sin (2 x)$
(ii) $\cos (3 x)$
(iii) $\cos (x)-i \sin (x) \quad$ (iv) $e^{5 i x}$
16. a) Verify if $x(L-x)$ is a well-behaved state function for a particle in a 1D-potential well of length L. If yes, show that this function would yield an expectation energy greater than the true ground state energy of the particle in a 1 D - potential well.
b) The term symbols for the states of excited $\mathrm{C}\left(1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1} 3 \mathrm{p}^{1}\right)$ are ${ }^{3} \mathrm{D}_{1},{ }^{3} \mathrm{D}_{2},{ }^{3} \mathrm{D}_{3},{ }^{1} \mathrm{D}_{2},{ }^{3} \mathrm{P}_{2}$, ${ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{0},{ }^{1} \mathrm{P}_{1},{ }^{3} \mathrm{~S}_{1},{ }^{1} \mathrm{~S}_{0}$. Arrange the states in the increasing order of energy. (3+2)
17. a) The four π-molecular orbitals of butadiene are:

$$
\begin{aligned}
& \psi_{1}=0.372 p_{1}+0.602 p_{2}+0.602 p_{3}+0.372 p_{4} \\
& \psi_{2}=0.602 p_{1}+0.372 p_{2}-0.372 p_{3}-0.602 p_{4} \\
& \psi_{3}=0.602 p_{1}-0.372 p_{2}-0.372 p_{3}+0.602 p_{4} \\
& \psi_{4}=0.372 p_{1}-0.602 p_{2}+0.602 p_{3}-0.372 p_{4}
\end{aligned}
$$

Draw these orbitals. Which atom(s) would have maximum electron density in the first excited state of butadiene?
b) Write the Hückel molecular orbital secular determinant for the π-electrons of cyclopentadienyl anion.

