Reg. No.: \qquad

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 M.Sc. CHEMISTRY, I SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2019
 CH-7318 - PHYSICAL CHEMISTRY I (QUANTUM CHEMISTRY)

Time: $21 / 2$ hours
Max. Marks: 70
This paper contains two printed pages and three parts A, B and C
PART-A
Answer any SIX of the following:
$6 \times 2=12$ marks

1. The position of the electron in hydrogen atom is determined with an accuracy of 0.001 nm . What is the uncertainty in the linear momentum of the electron? $\left(\mathrm{h}=6.62 \times 10^{-34} \mathrm{Js}\right)$
2. Given $\hat{A}=x$ and $\hat{B}=\frac{d}{d x}$, find $[\hat{A}, \hat{B}]$.
3. For a particle moving under no potential barrier, give (i) Hamiltonian operator; (ii) expression for the wavelength.
4. Calculate the spacing between E_{1} and E_{2} energy levels of a particle of mass $10^{-30} \mathrm{~kg}$ in a one-dimensional box of 0.1 nm length.
5. What is Born-Oppenheimer approximation?
6. Distinguish between π-electron bonding energy and delocalization energy.
7. Give the coupled representation of angular momenta of two electrons.
8. Write the eigen value equations for (i) orbital motion; (ii) spin of an electron.

PART-B

Answer any FOUR of the following:

$$
4 \times 12=48 \text { marks }
$$

9. (a) Show that (i) eigenvalues of a Hermitian operator are real; (ii) eigen functions of a Hermitian operator corresponding to different eigen values are orthogonal.
(b) Arrive at the time-independent Schrodinger wave equation from the equation of a standing wave. Give any three properties of an acceptable wave function. (6+6)
10. (a) For H atom, calculate spherical harmonics and radial functions when $\mathrm{n}=1, \mathrm{l}=0, \mathrm{M}=$ 0 ; and $\mathrm{n}=2, \mathrm{l}=0, \mathrm{M}=0$. Using these arrive at the wave functions, ψ_{100} and ψ_{200}.
(b) The wave functions obtained by solving Schrodinger equation for simple harmonic oscillator are $\psi=N H_{n}(y) \exp \left(-\frac{y^{2}}{2}\right)$, where $\mathrm{n}=0,1,2 \ldots . ; y=\sqrt{\beta} x ; \beta=\frac{4 \pi^{2} v m}{h}$ and $H(y)=(-1) \exp \left(y^{2}\right) \frac{d^{n}}{d y^{n}} \exp \left(-y^{2}\right)$. Evaluate the first four wave functions and sketch the first two wave functions and their squares.
11. (a) Explain the need for approximate methods to solve Schrodinger equation in most cases of interest to chemistry. State and prove variation theorem.
(b) Applying Heitler-London theory for hydrogen molecule, derive the symmetric and antisymmetric orbital functions.
12. (a) Show that (i) $\widehat{J_{+}}$commutes with $\widehat{J^{2}}$ but not with $\widehat{J_{z}}$; (ii) $\widehat{J_{-}}$lowers the eigen value of \widehat{J}_{z} from k_{m} to $\left(\mathrm{k}_{\mathrm{m}}-\hbar\right)$.
(b) Using HMO theory, arrive at the allowed energy levels for cyclopropenyl system.

Calculate (i) total π-electron energies; (ii) delocalization energies of cyclopropenyl cation and anion.
13. (a) Set up the Schrodinger equation for a particle moving on a sphere. Separate the variables to arrive at the θ and ϕ - equations.
(b) The roots of Huckel secular determinant for butadiene are $\mathrm{x}=1.618,-1.618,0.618$, and -0.618 . Find the four HMOs of butadiene.
(c) Briefly discuss the extended Huckel theory.
14. (a) Prove that for the ground state of $\mathrm{H}_{2}{ }^{+}$ion the orbital energies are

$$
\mathrm{E}_{1}=\left(\mathrm{H}_{\mathrm{AA}}+\mathrm{H}_{\mathrm{AB}}\right) /(1+\mathrm{S}) \text { and } \mathrm{E}_{2}=\left(\mathrm{H}_{\mathrm{AA}}-\mathrm{H}_{\mathrm{AB}}\right) /(1-\mathrm{S}) \text {. }
$$

(b) Explain SCF method for the determination of wave functions and energy of many electron atoms.

PART-C

Answer any TWO of the following:
15. (a) Calculate the effective nuclear charge for 3 s and 3 p electrons of sulphur.
(b) Give the Slater determinant for the ground state of Be atom.
16. (a) Calculate the values of J associated with the term symbol ${ }^{3} \mathrm{D}$.
(b) Arrange the following in the increasing order of energy. Give reasons.

$$
\begin{equation*}
{ }^{1} \mathrm{~S}_{0},{ }^{3} \mathrm{~S}_{1},{ }^{3} \mathrm{P}_{0},{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{2} \text { and }{ }^{1} \mathrm{D}_{2} \tag{2+3}
\end{equation*}
$$

17. (a) β-Carotene, a conjugated polyene, has maximum absorption of light at 480 nm . If this absorption corresponds to an $\mathrm{n}=11$ to $\mathrm{n}=12$ transition assuming electron in a in a 1D box model, what is the length of this molecule?
(b) An electron is confined in a cubic 3D potential well having dimensions $\mathrm{Lx}=\mathrm{Ly}=\mathrm{Lz}$ $=1 \times 10^{-15} \mathrm{~m}$. Calculate the energy of the particle in the $(2,1,1)$ state. What happens to this energy if the length of the box along x -axis is changed to $1.5 \times 10^{-15} \mathrm{~m}$? (mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}, \mathrm{~h}=6.62 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$)
