ST.JOSEPHS COLLEGE (AUTONOMOUS), BANGALORE- 27
 M.Sc.Big Data Analytics I SEMESTER
 SEMESTER EXAMINATION - OCTOBER 2019 BDA 1218 : PROBABILITY \& STOCHASTIC PROCESS

Time: $2 \frac{1}{2} \mathrm{hrs}$
Maximum marks: 70
(This question paper has 2 printed pages and 1 part.)

1. (a) The probability of passing a test is $3 / 4$. If three students take the test, what is the probability that (a) all three will fail and (b) at least one of the three will fail?
(b) If $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$ and $P\left(A^{c} \cap B^{c}\right)=\frac{5}{12}$, find $P(A \mid B)$.
(c) In some states, license plates have four characters: two letters followed by two numbers. If all sequences of four characters are equally likely, what is the probability that the license plate for a new car will contain no duplicate letters or numbers?
2. There are three cabinets, 1, 2, and 3, each of which has two drawers. Each drawer contains one coin; A has two gold coins, B has two silver coins, and C has one gold and one silver coin. A cabinet is chosen at random, one drawer is opened, and a silver coin is found. What is the probability that the other drawer in that cabinet contains a silver coin?
3. (a) Let X be the set of possible outcomes when a fair die is tossed. Then what is $\operatorname{Var}(\mathrm{X}) ?$
(b) Let X, Y and Z be three random variables. What is the covariance between $X+Y$ and Z.
4. (a) Give an example to highlight the difference between Type I and Type II errors[2]
(b) Explain (preferably with illustrations) the different steps involved in testing a hypothesis
(c) What is the p-value
5. It is claimed that sports-car owners drive on the average 18,000 miles per year. A consumer firm believes that the average mileage is probably lower. To check, the consumer firm obtained information from 40 randomly selected sports-car owners that resulted in a sample mean of 17,463 miles with a sample standard deviation of 1348 miles. What can we conclude about this claim? We can assume that random sample comes from a normal population. Use $\alpha=0.01$ and $z_{0.01}$ is given as -2.33 .
6. A problem of interest to sociologists is to determine the proportion society that has an upper- or lower-class occupation. Suppose that occupations are grouped into upper (U), middle (M), and lower (L) levels. U_{1} will denote the event that a father's occupation is upper-level; U_{2} will denote the event that a son's occupation is upper-level, etc.

	U_{2}	M_{2}	L_{2}
U_{1}	0.45	0.50	0.05
M_{1}	0.10	0.65	0.25
L_{1}	0.01	0.54	0.45

Such a table, is to be read in the following way: If a father is in U, the probability that his son is in U is 0.45 , the probability that his son is in M is 0.50 , etc. Find out what proportion of its people, in long run, will be in upper-class, middle-class and lower-class occupations?
7. Attempt any two of the four questions below:
$\begin{array}{lr}\text { (a) Discuss the Poisson distribution } & {[5]} \\ \text { (b) Discuss the Normal distribution } & {[5]} \\ \text { (c) Discuss the Markovian property with an illustration } & {[5]} \\ \text { (d) Distinguish between parametric and non-parametric tests. When would you use } \\ \text { which? } & {[5]}\end{array}$

