

Register Number:

Date:

ST JOSEPH'S UNIVERSITY, BENGALURU-27 B.Sc. (MATHEMATICS) - I SEMESTER SEMESTER EXAMINATION: OCTOBER 2023 (Examination conducted in November/ December 2023) <u>MTOE 2: MATHEMATICS FOR PHYSICAL SCIENES- I</u> (For current batch students only)

Time: 2 Hours

This question paper contains **TWO** printed pages and **THREE** parts. Normal **calculator** is allowed to use.

PART A

ANSWER ANY SIX OF THE FOLLOWING.

- 1. Define rank of a matrix.
- 2. Find the value(s) of h such that the matrix is the augumented matrix of a consistent linear system. $A = \begin{bmatrix} 2 & 3 & h \\ 4 & 6 & 7 \end{bmatrix}$
- 3. Is $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ an eigenvector of $A = \begin{bmatrix} -3 & 1 \\ -3 & 8 \end{bmatrix}$? Why or why not?
- 4. For what value of h and k the following system has no solution

$$\begin{array}{rcl} x_1 + h x_2 & = & 2 \\ 4 x_1 + 8 x_2 & = & k. \end{array}$$

- 5. Evaluate $\lim_{x \to 2} \sqrt{4x^2 3}$.
- 6. State Lagrange's Mean Value Theorem.
- 7. Find the derivative of the function $x^2 cos x$.

8. Evaluate
$$\int_0^{\frac{\pi}{2}} \sin^5 x \, dx$$
.

PART B

ANSWER ANY TWO OF THE FOLLOWING.

 $(2 \times 6 = 12)$

9. Find the value of 'a' for which the following matrix has rank 3:

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -8 \\ -4 & 5 & a \end{bmatrix}.$$

Max Marks: 60

 $(6 \times 2 = 12)$

10. Solve the following system of linear equations:

11. Find the eigenvalues and the corresponding eigenvectors of the matrix $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$.

PART C

 $(6 \times 6 = 36)$

ANSWER ANY SIX OF THE FOLLOWING.

12. Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

- 13. Is $f(x) = x^2 x + 3$ continuous at x = 3? Justify your answer using the definition of continuity.
- 14. Verify Cauchy mean value theorem for the function $f(x) = x^2 + 3$, $g(x) = x^3 + 1$ in [1,3].
- 15. Obtain the Maclaurin's series expansion of $e^x \cos x$ up to the term containing x^3 .
- 16. Evaluate the following limits using L'Hospital's Rule:

i)
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin(x)}$$
,
ii) $\lim_{y \to 0} \left(\frac{1}{y} - \frac{1}{\sin(y)}\right)$. (2+4)

17. Find the area bounded by the cardiod $r = a(1 + \cos \theta)$.

- 18. Find the area of the surface generated by revolving the curve $x = a \cos^3\theta$, $y = a \sin^3\theta$ about the x-axis.
- 19. Find the volume of the solid generated by revolving the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ about the x-axis.