```
Register Number:
``` Date:

ST JOSEPH'S UNIVERSITY, BENGALURU-27
B.Sc. (MATHEMATICS) - I SEMESTER

SEMESTER EXAMINATION: OCTOBER 2023
(Examination conducted in November/ December 2023)
MTOE 2: MATHEMATICS FOR PHYSICAL SCIENES- I
(For current batch students only)
Time: 2 Hours
Max Marks: 60
This question paper contains TWO printed pages and THREE parts.
Normal calculator is allowed to use.
PART A

\section*{ANSWER ANY SIX OF THE FOLLOWING.}
1. Define rank of a matrix.
2. Find the value(s) of \(h\) such that the matrix is the augumented matrix of a consistent linear system. \(A=\left[\begin{array}{lll}2 & 3 & h \\ 4 & 6 & 7\end{array}\right]\)
3. Is \(\left[\begin{array}{l}1 \\ 4\end{array}\right]\) an eigenvector of \(A=\left[\begin{array}{ll}-3 & 1 \\ -3 & 8\end{array}\right]\) ? Why or why not?
4. For what value of \(h\) and \(k\) the following system has no solution
\[
\begin{aligned}
& x_{1}+h x_{2}=2 \\
& 4 x_{1}+8 x_{2}=k .
\end{aligned}
\]
5. Evaluate \(\lim _{x \rightarrow 2} \sqrt{4 x^{2}-3}\).
6. State Lagrange's Mean Value Theorem.
7. Find the derivative of the function \(x^{2} \cos x\).
8. Evaluate \(\int_{0}^{\frac{\pi}{2}} \sin ^{5} x d x\).

\section*{PART B}

\section*{ANSWER ANY TWO OF THE FOLLOWING.}
9. Find the value of ' \(a\) ' for which the following matrix has rank 3:
\[
A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 2 & -8 \\
-4 & 5 & a
\end{array}\right]
\]
10. Solve the following system of linear equations:
\[
\begin{array}{ll}
x+y+z & =1 \\
x+2 y+3 z & =4 \\
x+3 y+5 z & =7 \\
x+4 y+7 z & =10 .
\end{array}
\]
11. Find the eigenvalues and the corresponding eigenvectors of the matrix \(A=\left[\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right]\).

\section*{PART C}

\section*{ANSWER ANY SIX OF THE FOLLOWING.}
\((6 \times 6=36)\)
12. Verify Cayley Hamilton theorem for the matrix \(A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]\).
13. Is \(f(x)=x^{2}-x+3\) continuous at \(x=3\) ? Justify your answer using the definition of continuity.
14. Verify Cauchy mean value theorem for the function \(f(x)=x^{2}+3, g(x)=x^{3}+1\) in \([1,3]\).
15. Obtain the Maclaurin's series expansion of \(e^{x} \cos x\) upto the term containing \(x^{3}\).
16. Evaluate the following limits using L'Hospital's Rule:
i) \(\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\sin (x)}\),
ii) \(\lim _{y \rightarrow 0}\left(\frac{1}{y}-\frac{1}{\sin (y)}\right)\).
17. Find the area bounded by the cardiod \(r=a(1+\cos \theta)\).
18. Find the area of the surface generated by revolving the curve \(x=a \cos ^{3} \theta, y=a \sin ^{3} \theta\) about the x -axis.
19. Find the volume of the solid genertaed by revolving the asteroid \(x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}\) about the x -axis.```

