ST.JOSEPH'S UNIVERSITY, BENGALURU -27
 B.Sc. (MATHEMATICS) - I SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2023
 (Examination conducted in November/ December 2023)
 MT 121 - MATHEMATICS- I
 (For current students only)

Time: 2 Hours
Max Marks: 60
This paper contains 2 printed pages and 3 parts
PART A
Answer any Six of the following:
(6X2=12)

1. Find one eigenvalue of the matrix $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 1 & 1 & 4 \\ 1 & 5 & 0\end{array}\right]$.
2. Evaluate $D^{n}\left(e^{x} \sin ^{2} x\right)$.
3. If $y=x^{n} \log x$ then show that $x y_{n+1}=n!$.
4. Give an example of a function $f:[a, b] \rightarrow R$ which satisfies intermediate value property but is not continuous on $[a, b]$.
5. State Rolle's theorem.
6. Evaluate $\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{2} \tan x}$.
7. Find the total differential of $f(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)$.
8. If $u=z-x, v=y-z, w=x+y+z$ find the Jacobian $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

PART B

Answer any three of the following:
9. Find all the eigen values of the matrix $=\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$. Find the set of eigenvectors corresponding to the smallest eigenvalue.
10. (a) Find the general solution of the system

$$
x_{1}+3 x_{2}+x_{3}=0,-4 x_{1}-9 x_{2}+2 x_{3}=0,-3 x_{2}-6 x_{3}=0 .
$$

(b) Find the value of h such that the matrix $\left[\begin{array}{llll}2 & -1 & : & 1 \\ 4 & -2 & : & h\end{array}\right]$ is the augmented matrix of a consistent linear system.
11. Define the continuity and differentiability of a function at a point. Also, prove that if a function is differentiable at a point, then it is continuous at that point.
12. If $y=\left(x+\sqrt{x^{2}-1}\right)^{m}$ then show that

$$
\left(x^{2}-1\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0 .
$$

PART C

Answer any five of the following:

13. State intermediate value theorem. Show that a continuous function $f:[0,1] \rightarrow[0,1]$ has a fixed point in $[0,1]$.
14. State and prove Lagrange's mean value theorem.
15. Use Taylor's theorem to prove that $1+\frac{x}{2}-\frac{x^{2}}{8}<\sqrt{1+x}<1+\frac{x}{2}$ for all $x>0$.
16. (a) Let $f:[0,2] \rightarrow R$ be a differentiable function such that
$f(0)=0, f(1)=2, f(2)=1$. Show that there exists $c \in(0,2)$ such that $f^{\prime}(c)=0$.
(b) Show that $u=e^{a x+b y} f(a x-b y)$ Prove that $b \frac{\partial u}{\partial x}+a \frac{\partial u}{\partial y}=2 a b u$.
17. If $u=f(r)$ and $r^{2}=x^{2}+y^{2}$ show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)$.
18. State and prove Euler's theorem for homogeneous functions and hence prove that if $u=\sin ^{-1} \frac{x}{y}+\tan ^{-1} \frac{y}{x}$ show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0$.
19. Find the maxima and minima of the function
$f(x, y)=x^{3}+3 x y^{2}-3 x^{2}-3 y^{2}+4$.
