Register number:

Date and session:

ST. JOSEPH'S UNIVERSITY, BENGALURU -27 B.Sc (MATHEMATICS) - III SEMESTER SEMESTER EXAMINATION: OCTOBER 2023 (Examination conducted in November/ December 2023) MT 322- MATHEMATICS III

(For current batch students only)

Time: 2 Hours

This paper contains TWO printed pages and THREE parts.

PART A

Answer any SIX of the following.

1. Let $G = \mathbb{Z}_6$ and $H = \{0, 2, 4\}$. Find all the distinct cosets of H in G.

2. Test the convergence of the sequence
$$\begin{cases} \frac{(3n+1)(n+2)}{n(n-1)} \end{cases}$$

- 3. Prove that the sequence $\left\{\frac{3n+4}{2n+1}\right\}$ is monotonically decreasing.
- 4. Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0.$
- 5. Find the particular integral of the differential equation $(D^2 + 16)y = 14\cos 3x$.
- 6. Determine if the given differential equation $x^2y'' + 4xy' + 2y = e^x$ is exact or not.
- 7. Find the Laplace transform of $(e^{-3t}cos5t)$.

8. Find the inverse Laplace transform of
$$\left(\frac{s^2 - 3s + 4}{s^3}\right)$$
.

PART B

Answer any THREE of the following.

9. Let a be an element of a group G. If |a| is finite and equal to n, then prove that $\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}$ and $a^i = a^j$, if and only if n|(i - j).

[6X 2=12]

Max Marks: 60

[**3X 6=18**]

- 10. Prove that every subgroup of a cyclic group is cyclic.
- 11. Prove that the limit of a convergent sequence is unique.

12. Show that the sequence $\{S_n\}$ defined by $S_1 = \sqrt{6}$ and $S_{n+1} = \sqrt{6S_n}$ converges to 6.

PART C

Answer any FIVE of the following.

- 13. Solve the differential equation $x^3 \frac{d^3y}{dx^3} 3x \frac{dy}{dx} + 3y = 4x$.
- 14. Solve the differential equation $\frac{d^2y}{dx^2} + \left(\frac{1}{x} 2\right)\frac{dy}{dx} + \left(1 \frac{1}{x}\right)y = 0$ when a part of the complementary function is given.
- 15. Solve the differential equation $y'' 3y' + 2y = e^{-x}$ using the method of variation of parameters.
- 16. (a) Prove that the center $\mathbb{Z}(G)$ of the group G is a normal subgroup of G.

(b) Evaluate
$$\int_0^\infty e^{-3t}(tsint)dt$$
. [3+3]

17. Find the inverse Laplace transform of the function $\left(\frac{s}{s^2+s-2}\right)$.

- 18. Verify convolution theorem for f(t) = sint and $g(t) = e^{-t}$.
- 19. Using Laplace transform method, solve 9y'' 6y' + y = 0 given that y(0) = 3 and y'(0) = 1.

[5X 6=30]