

Register number:
Date and session:

ST. JOSEPH'S UNIVERSITY, BENGALURU-27
UG OPEN ELECTIVE - III SEMESTER
SEMESTER EXAMINATION: OCTOBER, 2023
(Examination conducted in November/December 2023)
MTOE 9: MATHEMATICS FOR LIFE SCIENCES II (For current batch students only)

Duration: 2 Hours
Max. Marks: 60

1. The paper contains TWO printed pages and THREE parts.
2. Scientific calculators are allowed.

Part A: Answer any 6

1. Write the order and degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{4}+\left(\frac{d^{3} y}{d x^{3}}\right)^{3}+y=0$.
2. Solve the differential equation $\frac{d y}{d x}=\frac{x}{y}$.
3. Which of the following statements is true about the graph of the function drawn below?

(i) The function has a local minimum at 1 which is a global minimum.
(iii) The function has a local maximum at 3 which is a global maximum.
(ii) The function has a local minimum at 1 which is not a global minimum.
(iv) The function has a local maximum at 3 which is not a global maximum.
4. Let $z=\ln \left(x^{2}+y^{2}\right)$. Compute the first order partial derivatives of z.
5. Show that $(-2,0)$ is a critical point for the function $f(x, y)=x^{3}+6 x y^{2}-2 y^{3}-12 x$.
6. Write down the recurrence relation for the Fibonacci sequence along with the initial conditions.
7. In the Lotka Volterra predator-prey model if the prey have a place of refuge that can accommodate k prey then write down the new differential equations obtained.
8. Define SIS model for spread of infectious disease.

Part B: Answer any 3

9. Solve the differential equation $\frac{d y}{d x}=x^{2} y-2 x^{2}-3 x y+6 x-9 y+18$ by variable separable method.
10. Derive the differential equation that arises from a birth-death process and solve it. You may assume a constant proportion of reproductive individuals in the population, constant fertility, plentiful resources and no immigration/migration.
11. A square sheet of cardboard with each side 12 cm is to be used to make an open top box by cutting out a small square from each corner and bending up the sides. What is the side length of the small square if the box must have maximum volume?
12. Find the critical points of the function $f(x)=x^{2} e^{2 x}$ and determine whether they are local maxima, local minima or saddle points.
13. Sketch the graph of the function $f(x)=x^{3}-3 x$ in the range $[-3,3]$. You may assume the function has a local maxima at $x=-1$ and a local minima at $x=1$.

Part C: Answer any 5

14. Find all the second order partial derivatives of the function $z=\cos \left(x^{2}+y^{2}\right)$. Also show that $\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}$.
15. Find all the critical points of the function $z=4 y^{3}-3 y^{2} x+x^{3}-9 x$.
16. Examine the nature of the critical points $(1,-2)$ and $(-1,-2)$ of the function, $z=x^{3}+y^{2}-$ $3 x-12 y+2$.
17. Find the critical points of the function $f=2 x^{2}+2 y^{2}+4 z^{2}$ subject to the constraint $x+y+z=1$.
18. Explain contest competition and scramble competition in insect population dynamics.
19. Describe the Lotka Volterra predator prey model and solve the differential equations obtained.
20. Explain the SIR model for infectious disease spread.
