

Registration Number:

Date & Session:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27

B.Sc. Mathematics - V SEMESTER

SEMESTER EXAMINATION: OCTOBER 2023

(Examination conducted in November/December 2023)

MT 5123 - MATHEMATICS - V

(For current batch students only)

Time: 2 hrs

Max Marks: 60

This paper contains TWO printed pages and THREE parts.

Part A

Answer any SIX of the following.

- 1. In a ring *R*, prove that (i) $a \cdot 0 = 0$, $\forall a \in R$ (ii) a(-b) = -(ab), $\forall a, b \in R$.
- 2. Find all the idempotent elements of an integral domain R.
- 3. Define the characteristic of a ring. What is the characteristic of the ring $\mathbb{Z}_4 \oplus \mathbb{Z}_6$.
- 4. Show that $2\mathbb{Z} = \{2x \mid x \in \mathbb{Z}\}$ is an ideal of the ring of integers \mathbb{Z} .
- 5. Define the kernel of a ring homomorphism. Find the kernel of the ring homomorphism $f : \mathbb{Z} \to \mathbb{Z}_4$ defined by $f(x) = x \pmod{4}$.
- 6. Show that the necessary condition for the integral $\int_{x_1}^{x_2} (y^2 + (y')^2 + 2ye^x) dx$ to be extremum is $y'' y = e^x$.
- 7. What are the geodesics on (i) a plane and (ii) a sphere?
- 8. If the length of the curve joining the points $A(a, \theta_1, \varphi_1)$ and $B(a, \theta_2, \varphi_2)$ on a sphere of

radius *a* is given by $L = \int_{\theta_1}^{\theta_2} a \sqrt{1 + (\varphi')^2 \sin^2 \theta} \, d\theta$, show that the necessary condition for

L to be minimum is $\frac{\varphi'\sin^2\theta}{\sqrt{1+(\varphi')^2\sin^2\theta}}=c$, where c is a constant.

6 X 2 = 12

Part B

Answer any FIVE of the following.

- 9. Define a ring. Find the zero element, the unity, and the units of the ring $(\mathbb{Z}, \oplus, \otimes)$, where $a \oplus b = a + b + 1$, $a \otimes b = a + b + ab$, $\forall a, b \in \mathbb{Z}$.
- 10. Prove that a nonempty subset *S* of a ring *R* is a subring of *R* if and only if $\forall a, b \in S$, $a-b \in S$ and $ab \in S$. Hence show that $aR = \{ar \mid r \in R\}$, for some $a \in R$, is a subring of *R*.
- 11. Define an integral domain. Prove that there is no integral domain of order 6. Give the reason why there are no fields with 6 elements.
- 12. Define a prime ideal. Prove that an ideal *I* of a commutative ring *R* with unity is a prime ideal if and only if R/I is an integral domain.
- 13. Prove that for any integer n > 1, the ideal $n\mathbb{Z} = \{na \mid a \in \mathbb{Z}\}$ of the ring \mathbb{Z} is a maximal ideal if and only if n is a prime.
- 14. Show that the mapping $f : \mathbb{Z}_6 \to \mathbb{Z}_{30}$, defined by $f(x) = 10x \pmod{30}$, is a ring homomorphism. Find $\ker(f)$.
- 15. If $\varphi : R \to S$ is a ring homomorphism, prove that $R / \ker(\varphi) \cong \varphi(R)$. [The first isomorphism theorem].

Part C

Answer any THREE of the following.

3 X 6 = 18

16. Show that the necessary condition for the integral $I = \int_{x_1}^{x_2} F(x, y, y') dx$ to be an extremum

is that
$$\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0$$

- 17. (i) Deduce the Euler's equation for a functional F(x, y, y') that does not contain independent variable *x* explicitly.
 - (ii) Find the extremal of the integral $\int_{x_1}^{x_2} [y + (y')^2] dx$. (4+2)
- 18. Show that the geodesic on a right circular cylinder is a circular helix.
- 19. If a cable hangs freely under the action of gravity from two fixed points, show that it hangs in the form of a catenary.

20. Find the extremal of the functional
$$\int_{0}^{1} [x + (y')^{2}] dx$$
 subject to the constraint $\int_{0}^{1} y dx = 1$, given $y(0) = 0$ and $y(1) = 1$.

5 X 6 = 30