ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27

B.Sc. Mathematics - V SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2023

(Examination conducted in November/December 2023)
MT 5123 - MATHEMATICS - V
(For current batch students only)

Time: 2 hrs

Max Marks: 60
This paper contains TWO printed pages and THREE parts.

Part A

Answer any SIX of the following.
 $$
6 \times 2=12
$$

1. In a ring R, prove that (i) $a \cdot 0=0, \forall a \in R$ (ii) $a(-b)=-(a b), \forall a, b \in R$.
2. Find all the idempotent elements of an integral domain R.
3. Define the characteristic of a ring. What is the characteristic of the ring $\mathbb{Z}_{4} \oplus \mathbb{Z}_{6}$.
4. Show that $2 \mathbb{Z}=\{2 x \mid x \in \mathbb{Z}\}$ is an ideal of the ring of integers \mathbb{Z}.
5. Define the kernel of a ring homomorphism. Find the kernel of the ring homomorphism $f: \mathbb{Z} \rightarrow \mathbb{Z}_{4}$ defined by $f(x)=x(\bmod 4)$.
6. Show that the necessary condition for the integral $\int_{x_{1}}^{x_{2}}\left(y^{2}+\left(y^{\prime}\right)^{2}+2 y e^{x}\right) d x$ to be extremum is $y^{\prime \prime}-y=e^{x}$.
7. What are the geodesics on (i) a plane and (ii) a sphere?
8. If the length of the curve joining the points $A\left(a, \theta_{1}, \varphi_{1}\right)$ and $B\left(a, \theta_{2}, \varphi_{2}\right)$ on a sphere of radius a is given by $L=\int_{\theta_{1}}^{\theta_{2}} a \sqrt{1+\left(\varphi^{\prime}\right)^{2} \sin ^{2} \theta} d \theta$, show that the necessary condition for L to be minimum is $\frac{\varphi^{\prime} \sin ^{2} \theta}{\sqrt{1+\left(\varphi^{\prime}\right)^{2} \sin ^{2} \theta}}=c$, where c is a constant.

Part B

Answer any FIVE of the following.
9. Define a ring. Find the zero element, the unity, and the units of the ring $(\mathbb{Z}, \oplus, \otimes)$, where $a \oplus b=a+b+1, a \otimes b=a+b+a b, \forall a, b \in \mathbb{Z}$.
10. Prove that a nonempty subset S of a ring R is a subring of R if and only if $\forall a, b \in S$, $a-b \in S$ and $a b \in S$. Hence show that $a R=\{a r \mid r \in R\}$, for some $a \in R$, is a subring of R.
11. Define an integral domain. Prove that there is no integral domain of order 6. Give the reason why there are no fields with 6 elements.
12. Define a prime ideal. Prove that an ideal I of a commutative ring R with unity is a prime ideal if and only if R / I is an integral domain.
13. Prove that for any integer $n>1$, the ideal $n \mathbb{Z}=\{n a \mid a \in \mathbb{Z}\}$ of the ring \mathbb{Z} is a maximal ideal if and only if n is a prime.
14. Show that the mapping $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{30}$, defined by $f(x)=10 x(\bmod 30)$, is a ring homomorphism. Find $\operatorname{ker}(f)$.
15. If $\varphi: R \rightarrow S$ is a ring homomorphism, prove that $R / \operatorname{ker}(\varphi) \cong \varphi(R)$. [The first isomorphism theorem].

Part C

Answer any THREE of the following.

16. Show that the necessary condition for the integral $I=\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}\right) d x$ to be an extremum is that $\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=0$.
17. (i) Deduce the Euler's equation for a functional $F\left(x, y, y^{\prime}\right)$ that does not contain independent variable x explicitly.
(ii) Find the extremal of the integral $\int_{x_{1}}^{x_{2}}\left[y+\left(y^{\prime}\right)^{2}\right] d x$.
18. Show that the geodesic on a right circular cylinder is a circular helix.
19. If a cable hangs freely under the action of gravity from two fixed points, show that it hangs in the form of a catenary.
20. Find the extremal of the functional $\int_{0}^{1}\left[x+\left(y^{\prime}\right)^{2}\right] d x$ subject to the constraint $\int_{0}^{1} y d x=1$, given $y(0)=0$ and $y(1)=1$.
