ST. JOSEPH'S COLLEGE(AUTONOMOUS), BENGALURU -27
 B.Sc (MATHEMATICS) - V SEMESTER SEMESTER EXAMINATION: OCTOBER 2023

(Examination conducted in November/December 2023)

MT 5223- MATHEMATICS VI

(For current batch students only)
Time: 2 Hours
Max Marks: 60
This paper contains TWO printed pages and THREE parts.

PART A

Answer any SIX of the following.
[6X 2=12]

1. Find the locus of z such that $i m(z+i) \geq 0$
2. Show that $u=e^{x} \cos (y)$ and $v=e^{x} \sin (y)$ are orthogonal to each other.
3. Check if the function $v=2 x y$ is harmonic.
4. Explain the inversion of a complex function.
5. Find the fixed points of $w=\frac{i-z}{z+i}$.
6. If $\phi=x^{2} y^{2} z^{2}$, find $\nabla \phi$.
7. If $\vec{F}=y z \hat{i}+z x \hat{j}+x y \hat{k}$, then show that $\operatorname{curl} \vec{F}=0$.
8. Find the spherical co-ordinates of the cartesian points $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right)$.

PART B

Answer any FIVE of the following.
[5X 6=30]
9. State and prove the necessary condition for a complex function $f(z)=u+i v$ to be analytic.
10. If $f(z)=u+i v$ is analytic then show that $\left(\frac{\partial}{\partial x}|f(z)|\right)^{2}+\left(\frac{\partial}{\partial y}|f(z)|\right)^{2}=\left|f^{\prime}(z)\right|^{2}$.
11. Construct an analytical function $f(z)=u+i v$ whose $u-v=x^{3}+3 x^{2} y-3 x y^{2}-y^{3}$.
12. Find the bi-linear transformation which maps $1,-i,-1$ to $0, i, \infty$. Also, find its invariant points.
13. If $f(z)$ is analytic within and on a simple closed curve C and if ${ }^{\prime} a^{\prime}$ is any point within C then prove that $f(a)=\frac{1}{2 \pi i} \oint_{C}\left(\frac{f(z)}{z-a}\right) d z$.
14. Evaluate $\oint_{C} \frac{\sin \left(\pi z^{2}\right)+\cos \left(\pi z^{2}\right)}{(z-1)(z-2)} d z$ where $C:|z|=3$.
15. State and prove Lioville's theorem.

PART C

Answer any THREE of the following.

16. Find the unit vector normal to the surface $x y^{3} z^{2}=4$ at the point $(-1,-1,2)$.
17. Find the angle between the directions of the normals to the surface $x y=z^{2}$ at the points $(4,1,2)$ and $(3,3,-3)$.
18. Define Laplacian of a scalar point function. Prove that $\nabla^{2}(\phi \psi)=\phi \nabla^{2} \psi+2 \nabla \phi \nabla \psi+\psi \nabla^{2} \phi$.
19. Show that $\vec{F}=\left(2 x y^{2}+y z\right) \hat{i}+\left(2 x^{2} y+x z+2 y z^{2}\right) \hat{j}+\left(2 y^{2} z+x y\right) \hat{k}$ is a conservative force field and find its scalar potential.
20. Prove that spherical coordinate system is an orthogonal curvilinear coordinate system.
