ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU -27
 B.Sc. (PHYSICS) - V SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2023

(Examination conducted in November/December 2023)
PH 5223: ELEMENTS OF ATOMIC AND MOLECULAR PHYSICS
(For current batch students only)
Time: 2 Hours
Max Marks: 60
This paper contains 2 printed pages and 3 parts
PART-A
Answer any FOUR questions:

1. With necessary theory, describe Stern-Gerlach experiment and mention its importance.
2. What is Zeeman effect? Give the quantum mechanical explanation of normal Zeeman effect.
3. Obtain an expression for the rotational energy levels of diatomic molecule and show that pure rotational spectral lines are equally spaced.
4. a) Explain the L-S coupling. Give the expression for spin orbit interaction energy.
b) Give the details of different regions of molecular spectra.
5. What is Compton effect? Derive an expression for Compton shift and wavelength of scattered photon.
6. a) Describe linear, symmetric top and asymmetric top molecules?
b) What is a black body? Discuss the black body spectrum.

PART-B

Answer any FOUR questions:
[4X5 = 20]

Planck's Constant $=6.626 \times 10^{-34} \mathrm{Js}$. Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$, Charge of electron $=1.6 \times 10^{-19} \mathrm{C}$
7. The first line of Balmer series of hydrogen has a wavelength $6563 \AA$. Calculate the wavelength of the second line.
8. Find the possible orientations of total angular momentum vector \vec{J} corresponding to $\mathrm{j}=3 / 2$ with respect to a magnetic field along Z-axis and sketch them.
9. Calculate Lande's g factor and total magnetic moment for ${ }^{2} \mathrm{D}_{3 / 2}$ state.
10. The force constant of CO bond is $187 \mathrm{~N} / \mathrm{m}$. Find the frequency of vibration of CO molecule and the spacing between vibrational levels. Mass of C atom is $1.99 \times 10^{-26} \mathrm{~kg}$ and of O atom is $2.66 \times 10^{-26} \mathrm{~kg}$.
11. In an experiment to study the Raman effect using mercury green radiation of wavelength 546.1 nm , a Stokes line of wavelength 554.3 nm was observed. Find the Raman shift and the wavelength corresponding to anti-Stokes line.
12. Calculate the average energy of an oscillator of frequency $6 \times 10^{13} \mathrm{~Hz}$ at a temperature 1800 K based on Planck's hypothesis. Boltzmann constant $=1.38 \times 10^{23} \mathrm{~J} / \mathrm{K}$.

PART-C

Answer any FOUR questions with proper justification.
[4X2 = 8]
13. Why is Sodium D line a doublet?
14. What is the significance of selection rule?
15. "An electronic transition takes place so rapidly that a vibrating molecule does not change its internuclear distance appreciably during the transition" Is the statement true or false? Comment.
16. Why all molecules do not show rotational spectra?
17. When a metal is heated it appears red first and then blue. Give reason.
18. Differentiate between Mie scattering and Rayleigh scattering.

