

Register Number:

Date:

ST. JOSEPH'S UNIVERSITY, BENGALURU-27
 M.Sc. (MATHEMATICS) - I SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2023
 (Examination conducted in November/December 2023)
 MT7321: LINEAR ALGEBRA
 (For current batch students only)

Duration: 2 Hours
Max. Marks: 50

1. The paper contains two printed pages.
2. Attempt any FIVE FULL questions. Each question carries TEN marks.
3. Question No. $\mathbf{3}$ has internal choice and answer either part a or part b.
4. a) Let $T: V \rightarrow W$ be linear and let $\left\{v_{1}, \cdots, v_{k}\right\} \subseteq V$. Show that if $\left\{T\left(v_{1}\right), \cdots, T\left(v_{k}\right)\right\}$ is linearly independent in W, then $\left\{v_{1}, \cdots, v_{k}\right\}$ is linearly independent in V. Also, prove the converse if T is 1-1.
b) Is the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(x, y-1)$ a linear transformation? Justify your answer.
c) Let $W=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$, where $m, b \in \mathbb{R}$. Prove that W is a subspace of the vector space \mathbb{R}^{2} if and only if $b=0$.
[3m]
5. a) Let W_{1}, \cdots, W_{n} be subspaces of a vectorspace V. Prove that $V=W_{1} \oplus \cdots \oplus W_{n}$ iff each $v \in V$ admits a unique representation $v=v_{1}+\cdots+v_{n}$, where $v_{i} \in W_{i}$ for $i=1,2, \cdots, n$. [4m]
b) Let $V=W_{1} \oplus W_{2}$ be a vector space and let $T: V \rightarrow V$ be a projection on subspace W_{1} along the subspace W_{2}. Then prove the following:
[6m]
i) $T^{2}=T$.
ii) $W_{1}=N(I-T)$ and $W_{2}=R(I-T)$.
6. a) i) Consider the subspace $W=\left\{A \in M_{4 \times 4}(\mathbb{R})\right.$: $\left.\operatorname{trace}(A)=0\right\}$. Find the basis and the dimension of W.
[4m]
ii) Define a T-invariant subspace. Is the sum of two T-invariant subspaces a T-invariant subspace? Justify your answer.
iii) Let $A \in M_{2 \times 2}(\mathbb{R})$ with $\operatorname{trace}(A)=5$ and $\operatorname{det}(A)=4$. Find the eigenvalues of A.

OR

b) i) State and prove the Cayley-Hamilton theorem.
ii) Compute the minimal polynomial of the following matrix:

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

4. a) Diagonalize the following matrix:
[8m]

$$
A=\left[\begin{array}{ccc}
-9 & 4 & 4 \\
-8 & 3 & 4 \\
-16 & 8 & 7
\end{array}\right]
$$

b) Let T be a linear operator on a vector space V of dimension 6 . Write the Jordan canonical form of T if the minimal polynomial of T is $(x-2)^{4}(x-7)^{2}$.
[2m]
5. a) Prove that the absolute value of an eigenvalue of a unitary operator T on a finite-dimensional inner product space V is 1 .
b) Let V be an inner product space, and let T be a normal operator on V. Then prove the following statements:
[6m]
i) $T-c I$ is normal for every $c \in \mathbb{C}$.
ii) If $T(x)=\lambda x$, then $T^{*}(x)=\bar{\lambda} x$.
6. a) Use the Gram-Schmidt procedure to convert the following basis vectors of \mathbb{R}^{3} into an orthonormal basis vectors:
[7m]

$$
x=(1,1,0), y=(1,1,1) \text { and } z=(3,1,1) .
$$

b) Is the following matrix a positive definite? Justify your answer:

$$
A=\left[\begin{array}{lll}
4 & 2 & 0 \\
2 & 2 & 3 \\
0 & 3 & 1
\end{array}\right]
$$

7. a) Define the matrix of a bilinear form on a finite-dimensional vector space $V(\mathbb{F})$. Find the matrix of the bilinear form defined by the standard dot product on \mathbb{R}^{2} w.r.t the basis $\{(1,1),(0,1)\}$.
b) Consider the vector space $V=M_{2 \times 2}(\mathbb{R})$. Show that the function $\langle\rangle:, V \times V \rightarrow \mathbb{R}$ defined by $\langle A, B\rangle=\operatorname{trace}(A B), \forall A, B \in V$ is a symmetric bilinear form.
[4m]
c) Consider the bilinear form \langle,$\rangle on \mathbb{R}^{2}$ defined by $\langle x, y\rangle=x^{T} A y$, where $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Is the form a positive definite or a negative definite? Justify your answer.
[3m]
