

Register Number:

Date:

ST. JOSEPH'S UNIVERSITY, BENGALURU-27 M.Sc. (MATHEMATICS) - I SEMESTER SEMESTER EXAMINATION: OCTOBER 2023 (Examination conducted in November/December 2023) <u>MT7321: LINEAR ALGEBRA</u> (For current batch students only)

Duration: 2 Hours

Max. Marks: 50

- 1. The paper contains two printed pages.
- 2. Attempt any FIVE FULL questions. Each question carries TEN marks.
- 3. Question No. 3 has internal choice and answer either part a or part b.
- 1. a) Let $T: V \to W$ be linear and let $\{v_1, \dots, v_k\} \subseteq V$. Show that if $\{T(v_1), \dots, T(v_k)\}$ is linearly independent in W, then $\{v_1, \dots, v_k\}$ is linearly independent in V. Also, prove the converse if T is 1-1. [5m]
 - b) Is the function $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x, y 1) a linear transformation? Justify your answer. [2m]
 - c) Let $W = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$, where $m, b \in \mathbb{R}$. Prove that W is a subspace of the vector space \mathbb{R}^2 if and only if b = 0. [3m]
- 2. a) Let W_1, \dots, W_n be subspaces of a vectorspace V. Prove that $V = W_1 \oplus \dots \oplus W_n$ iff each $v \in V$ admits a unique representation $v = v_1 + \dots + v_n$, where $v_i \in W_i$ for $i = 1, 2, \dots, n$. [4m]
 - b) Let $V = W_1 \oplus W_2$ be a vector space and let $T : V \to V$ be a projection on subspace W_1 along the subspace W_2 . Then prove the following: [6m]
 - i) $T^2 = T$.
 - ii) $W_1 = N(I T)$ and $W_2 = R(I T)$.
- 3. a) i) Consider the subspace $W = \{A \in M_{4 \times 4}(\mathbb{R}) : trace(A) = 0\}$. Find the basis and the dimension of W. [4m]
 - ii) Define a *T*-invariant subspace. Is the sum of two *T*-invariant subspaces a *T*-invariant subspace?Justify your answer. [3m]
 - iii) Let $A \in M_{2 \times 2}(\mathbb{R})$ with trace(A) = 5 and det(A) = 4. Find the eigenvalues of A. [3m]

OR

b) i) State and prove the Cayley-Hamilton theorem.

[8m]

 $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}.$

ii) Compute the minimal polynomial of the following matrix:

4. a) Diagonalize the following matrix:

$$A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$

- b) Let T be a linear operator on a vector space V of dimension 6. Write the Jordan canonical form of T if the minimal polynomial of T is $(x 2)^4 (x 7)^2$. [2m]
- 5. a) Prove that the absolute value of an eigenvalue of a unitary operator T on a finite-dimensional inner product space V is 1. [4m]
 - b) Let V be an inner product space, and let T be a normal operator on V. Then prove the following statements: [6m]
 - i) T cI is normal for every $c \in \mathbb{C}$.
 - ii) If $T(x) = \lambda x$, then $T^*(x) = \overline{\lambda} x$.
- 6. a) Use the Gram-Schmidt procedure to convert the following basis vectors of ℝ³ into an orthonormal basis vectors:
 [7m]

$$x = (1, 1, 0), y = (1, 1, 1)$$
 and $z = (3, 1, 1).$

b) Is the following matrix a positive definite? Justify your answer:

$$A = \begin{bmatrix} 4 & 2 & 0 \\ 2 & 2 & 3 \\ 0 & 3 & 1 \end{bmatrix}.$$

- 7. a) Define the matrix of a bilinear form on a finite-dimensional vector space $V(\mathbb{F})$. Find the matrix of the bilinear form defined by the standard dot product on \mathbb{R}^2 w.r.t the basis $\{(1,1), (0,1)\}$. [3m]
 - b) Consider the vector space $V = M_{2\times 2}(\mathbb{R})$. Show that the function $\langle , \rangle : V \times V \to \mathbb{R}$ defined by $\langle A, B \rangle = trace(AB), \forall A, B \in V$ is a symmetric bilinear form. [4m]
 - c) Consider the bilinear form \langle , \rangle on \mathbb{R}^2 defined by $\langle x, y \rangle = x^T A y$, where $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Is the form a positive definite or a negative definite? Justify your answer. [3m]

[2m]

[8m]

[**3**m]