Register Number:

Date and session:

ST JOSEPH'S UNIVERSITY, BENGALURU - 27 M.Sc (MATHEMATICS) - I SEMESTER SEMESTER EXAMINATION: OCTOBER 2023 (Examination conducted in November/December 2023) <u>MT7221: REAL ANALYSIS</u> (For current Batch students only)

Duration: 2 Hours

Max. Marks: 50

- 1. The paper contains **TWO** printed pages and **ONE** part.
- 2. Attempt any **FIVE FULL** questions.
- 1. a) Show that every superset of an infinite set is an infinite set.
 - b) Prove that union of two denumerable sets is denumerable. [6+4]
- 2. a) Let $f : [a, b] \longrightarrow \mathbb{R}$ be bounded on [a, b]. Let P be a partition of [a, b] and Q be a refinement of P. Show that $U(P, f) \ge U(Q, f)$ and $L(P, f) \le L(Q, f)$.
 - b) A function f is defined on [0, 1] by

$$f(x) = \begin{cases} x, x \in [0, 1] \cap \mathbb{Q} \\ 0, x \in [0, 1] - \mathbb{Q} \end{cases}$$

Find the upper and lower integral of f.

- 3. a) Let $f : [a, b] \longrightarrow \mathbb{R}$ be bounded on [a, b] and f be continuous on [a, b] except for a finite number of points in [a, b]. Prove that f is integrable on [a, b].
 - b) State and prove the fundamental theorem of integral calculus. [5+5]

OR

- a) Let $f:[a,b] \to \mathbb{R}$ be integrable and for each $x \in [a,b]$ define $f(x) = \int_a^x f(t)dt$. Show that F is differentiable at any point $c \in [a,b]$ at which f is continuous and that F'(c) = f(c).
- b) Define pointwise convergence of a sequence of functions (f_n) defined on a domain $\mathbb{D} \subseteq \mathbb{R}$. Determine the set of points on which the sequence (f_n) is pointwise convergent where $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ is defined by $f_n(x) = x^n$. [6+4]

[6+4]

4. a) For the series
$$\sum_{n=1}^{\infty} f_n(x)$$
 where $f_n(x) = n^2 x e^{-n^2 x^2} - (n-1)^2 x e^{-(n-1)^2 x^2}, x \in [0,1]$, show that $\sum_{n=1}^{\infty} \left(\int_0^1 f_n(x) dx \right) \neq \int_0^1 \left(\sum_{n=1}^{\infty} f_n(x) \right) dx.$

- b) A sequence of functions (f_n) is defined on [0,1] by $f_n(x) = \frac{nx}{1+n^2x^2}, x \in [0,1]$. Show that the sequence (f_n) is not uniformly convergent on [0,1]. [5+5]
- 5. a) Prove that a finite set in a metric space is always closed.
 - b) Show that the mapping $d : \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow [0, \infty)$ is metric on \mathbb{R}^2 where $d(x, y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$, $x = (x_1, x_2)$ and $y = (y_1, y_2) \in \mathbb{R}^2$. [5+5]
- 6. a) Show that the sequence space ℓ^{∞} is complete for $1 \leq p \leq \infty$.
 - b) Show that a set S in a metric space X is bounded iff there exists $x_0 \in X$ and r > 0 such that $S \subseteq B(x_0, r)$. [6+4]
- 7. a) Let $f: (X, d_X) \longrightarrow (Y, d_Y)$ be a mapping between metric spaces. Show that f is continuous iff the inverse $f^{-1}(V)$ of each d_Y -open set V of Y is a d_X -open subset of X.
 - b) Let $f: X \longrightarrow Y$ be a function. Show that f is continuous iff for every subset $B \subseteq Y, f^{-1}(\operatorname{Int}(B)) \subseteq \operatorname{Int}(f^{-1}(B)).$ [5+5]

##