

Register Number:
Date and session:

ST JOSEPH'S UNIVERSITY, BENGALURU - 27
M.Sc (MATHEMATICS) - I SEMESTER SEMESTER EXAMINATION: OCTOBER 2023
(Examination conducted in November/December 2023)
MT7221: REAL ANALYSIS
(For current Batch students only)
Duration: 2 Hours
Max. Marks: 50

1. The paper contains TWO printed pages and ONE part.
2. Attempt any FIVE FULL questions.
3. a) Show that every superset of an infinite set is an infinite set.
b) Prove that union of two denumerable sets is denumerable.
4. a) Let $f:[a, b] \longrightarrow \mathbb{R}$ be bounded on $[a, b]$. Let P be a partition of $[a, b]$ and Q be a refinement of P. Show that $U(P, f) \geq U(Q, f)$ and $L(P, f) \leq L(Q, f)$.
b) A function f is defined on $[0,1]$ by

$$
f(x)=\left\{\begin{array}{l}
x, x \in[0,1] \cap \mathbb{Q} \tag{6+4}\\
0, x \in[0,1]-\mathbb{Q}
\end{array}\right.
$$

Find the upper and lower integral of f.
3. a) Let $f:[a, b] \longrightarrow \mathbb{R}$ be bounded on $[a, b]$ and f be continuous on $[a, b]$ except for a finite number of points in $[a, b]$. Prove that f is integrable on $[a, b]$.
b) State and prove the fundamental theorem of integral calculus.

OR

a) Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable and for each $x \in[a, b]$ define $f(x)=\int_{a}^{x} f(t) d t$. Show that F is differentiable at any point $c \in[a, b]$ at which f is continuous and that $F^{\prime}(c)=f(c)$.
b) Define pointwise convergence of a sequence of functions $\left(f_{n}\right)$ defined on a domain $\mathbb{D} \subseteq \mathbb{R}$. Determine the set of points on which the sequence $\left(f_{n}\right)$ is pointwise convergent where $f_{n}: \mathbb{R} \longrightarrow \mathbb{R}$ is defined by $f_{n}(x)=x^{n}$.
[6+4]
4. a) For the series $\sum_{n=1}^{\infty} f_{n}(x)$ where $f_{n}(x)=n^{2} x e^{-n^{2} x^{2}}-(n-1)^{2} x e^{-(n-1)^{2} x^{2}}, x \in[0,1]$, show that $\sum_{n=1}^{\infty}\left(\int_{0}^{1} f_{n}(x) d x\right) \neq \int_{0}^{1}\left(\sum_{1}^{\infty} f_{n}(x)\right) d x$.
b) A sequence of functions $\left(f_{n}\right)$ is defined on $[0,1]$ by $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}, x \in[0,1]$. Show that the sequence $\left(f_{n}\right)$ is not uniformly convergent on $[0,1]$.
[5+5]
5. a) Prove that a finite set in a metric space is always closed.
b) Show that the mapping $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \longrightarrow[0, \infty)$ is metric on \mathbb{R}^{2} where $d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}, x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$.
6. a) Show that the sequence space ℓ^{∞} is complete for $1 \leq p \leq \infty$.
b) Show that a set S in a metric space X is bounded iff there exists $x_{0} \in X$ and $r>0$ such that $S \subseteq B\left(x_{0}, r\right)$.
7. a) Let $f:\left(X, d_{X}\right) \longrightarrow\left(Y, d_{Y}\right)$ be a mapping between metric spaces. Show that f is continuous iff the inverse $f^{-1}(V)$ of each d_{Y}-open set V of Y is a d_{X}-open subset of X.
b) Let $f: X \longrightarrow Y$ be a function. Show that f is continuous iff for every subset $B \subseteq Y, f^{-1}(\operatorname{Int}(B)) \subseteq \operatorname{Int}\left(f^{-1}(B)\right)$.

BEST WISHES

