Register number:

Date and session:

ST. JOSEPH'S UNIVERSITY, BENGALURU- 27 M.Sc MATHEMATICS- III SEMESTER SEMESTER EXAMINATION: OCTOBER 2023 (Examination conducted in November/December 2023) **MT 9222: CLASSICAL AND CONTINUUM MECHANICS**

(For current batch students only)

Time: 2 hr

Max. Marks: 50

The paper contains TWO printed pages.

Answer any FIVE full questions of the following:

1. Obtain the expression for the following:	
(a) Acceleration in a plane polar co-ordinate system.	[4 marks]
(b) Coriolis force.	[6 marks]
2. Derive the following:	
(a) Lagrangian form of D'Alembert's principle.	[3 marks]
(b) Generalized momentum of system of particles.	[2 marks]
(c) Hamiltonian principle for non-holonomic constraints.	[5 marks]
3. Derive the expression for principle of least action.	[10 marks]
(OR)	
(a) State and prove $\epsilon - \delta$ identity.	[4 marks]
(b) Show that $\nabla^2(x_m x_n) = 2\delta_{mn}$.	[2 marks]
(c) Derive curl of a vector field.	[4 marks]
4. (a) State and prove divergence theorem of a tensor.	[5 marks]
(b) Find F and F^{-1} for the deformation defined as:	
$x_1 = x_1^0 - x_2^0 x_3^0, \ \ x_2 = x_2^0 + x_1^0 x_3^0, \ \ x_3 = x_3^0.$	[5 marks]

5.	. (a) Prove the following:	
	(i) $J = 1 + e_{kk}$ for a small deformation.	[3 marks]
	(ii) e_{kk} is a dilation.	[2 marks]
	(b) Find the velocity and acceleration for a continuum rotates like rigid bo	dy with
	angular velocity $\vec{\omega}$ about x_3 axis.	[5 marks]
6.	. (a) Find the stream lines and path lines for the motion determined by:	
	$v_1 = 1 + at$, $v_2 = x_1$, $v_3 = 0$, where a is a constant.	[5 marks]
	(b) State and prove Kelvin's circulation theorem.	[5 marks]
7	(a) For a given velocity field $v_i = \frac{x_i}{1-x_i}$ show that $a = a_0(1+t)^{-3}$	[4 marks]
<i>.</i>	. (a) For a given velocity field $v_i = \frac{1}{1+t}$, show that $p = p_0(1+t)$.	

(b) Derive the expression of balance of energy. [6 marks]