ST. JOSEPH'S UNIVERSITY, BENGALURU- 27
 M.Sc MATHEMATICS- III SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2023
 (Examination conducted in November/December 2023)
 MT 9222: CLASSICAL AND CONTINUUM MECHANICS

(For current batch students only)
Time: 2 hr
Max. Marks: 50
The paper contains TWO printed pages.

Answer any FIVE full questions of the following:

1. Obtain the expression for the following:
(a) Acceleration in a plane polar co-ordinate system.
(b) Coriolis force.
2. Derive the following:
(a) Lagrangian form of D'Alembert's principle.
(b) Generalized momentum of system of particles.
(c) Hamiltonian principle for non-holonomic constraints.
3. Derive the expression for principle of least action.
(OR)
(a) State and prove $\epsilon-\delta$ identity.
(b) Show that $\nabla^{2}\left(x_{m} x_{n}\right)=2 \delta_{m n}$.
(c) Derive curl of a vector field.
4. (a) State and prove divergence theorem of a tensor.
(b) Find F and F^{-1} for the deformation defined as:

$$
x_{1}=x_{1}^{0}-x_{2}^{0} x_{3}^{0}, \quad x_{2}=x_{2}^{0}+x_{1}^{0} x_{3}^{0}, \quad x_{3}=x_{3}^{0} .
$$

5. (a) Prove the following:
(i) $J=1+e_{k k}$ for a small deformation.
(ii) $e_{k k}$ is a dilation.
(b) Find the velocity and acceleration for a continuum rotates like rigid body with angular velocity $\vec{\omega}$ about x_{3} axis.
6. (a) Find the stream lines and path lines for the motion determined by: $v_{1}=1+a t, v_{2}=x_{1}, v_{3}=0$, where a is a constant.
(b) State and prove Kelvin's circulation theorem.
7. (a) For a given velocity field $v_{i}=\frac{x_{i}}{1+t}$, show that $\rho=\rho_{0}(1+t)^{-3}$.
(b) Derive the expression of balance of energy.
