Registration Number:

Date & Session:

ST JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc (MATHEMATICS) - III SEMESTER END SEMESTER EXAMINATION : OCTOBER 2023 (Examination conducted in November /December 2023) MT 9622 : MATHEMATICAL METHODS (For current batch students only)

Time: 2 Hours This paper contains TWO printed pages.	Max Marks: 50
Answer any FIVE full questions.	5 X 10 = 50 Marks
1. a) Find the resolvent kernel of the Volterra integral equation with kernel	K(x,t) = 1. [5]
b) Solve the Fredholm integral equation $u(x) = e^{x} + \lambda \int_{0}^{1} 2e^{x}e^{t} u(t) dt$ usin	ng separable
kernel method.	[5]
2. a) Derive an equivalent integral equation for the initial value problem $y'' - with y(0) = 1$, $y'(0) = -2$.	$-3y' + 2y = 4\sin x$ [5]
b) Find the Fourier sine transform of $f(x) = e^{- x }$ and hence evaluate	$\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx, \ m > 0.$ [5]
3. Find the Fourier transform of $f(x) = \begin{cases} 1 - x & for x \le 1 \\ 0 & for x > 1 \end{cases}$. Hence evaluate	$\int_{0}^{\infty} \frac{\sin^2 y}{y^2} dy.$ [10]

OR

Verify convolution theorem for Fourier transform for the functions $f(x) = g(x) = e^{-x^2}$. [10]

- 4. a) Determine the first three terms in the expansion of roots of the equation $x^2 + 2\varepsilon x 3 = 0$ for small ε . [5]
 - b) Define a singular perturbation problem and hence solve $\varepsilon x^3 x + 1 = 0.$ [5]

- 5. Solve the initial value problem $\frac{dy}{dx} + \varepsilon y = x$ with y(0) = 0 using perturbation method. [10]
- 6. a) Find the leading term of the asymptotic expansion for $\int_{0}^{\infty} e^{-x \sin h^2 t} dt$ as $x \to \infty$. [5]
 - b) State Watson's lemma and hence evaluate $\int_{0}^{5} \frac{e^{-xt}}{1+t^2} dt$ as $x \to \infty$. [5]
- 7. Find the asymptotic expansion for the function $f(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt$ as $x \to \infty$. [10]