ST. JOSEPH'S UNIVERSITY, BENGALURU -27
 M.Sc (MATHEMATICS) - III SEMESTER SEMESTER EXAMINATION: OCTOBER 2023

(Examination conducted in November/ December 2023)
MT 9722 - NUMERICAL ANALYSIS
(For current batch students only)
Time: 2 Hours
Max Marks: 50
This paper contains TWO printed pages.
Answer any FIVE full questions of the following.
[$5 \times 10=50]$

1. (a) Solve the system of equation using Thomas algorithm.

$$
\begin{aligned}
2 x_{1}-x_{2} & =3 \\
-x_{1}+2 x_{2}-x_{3} & =-3 \\
-x_{2}+2 x_{3} & =1
\end{aligned}
$$

(b) Find the first derivative of the function at $x=1.5$ using the given data:

x	1.5	2.0	2.5	3.0	3.5	4.0
$\mathrm{f}(\mathrm{x})$	3.375	7.0	13.625	24.0	38.875	59.0

2. State and prove Hermite's interpolation formula.
3. (a) Apply Simpson's rule to evaluate the integral $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{(1+x+y)}$, taking $h=k=0.5$.
(b) Compute $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using Trapezoidal rule, taking $h=0.5$ and $h=0.25$. Hence find the value of the given integral using Romberg's method.
[OR]
(a) Using Adam-Bashforth method, evaluate $y(0.8)$ for the differential equation $y^{\prime}=x-y^{2}$ satisfying the data $y(0)=0, y(0.2)=0.02, y(0.4)=0.0795$ and $y(0.6)=0.1762$.
(b) Determine the values of y at the pivotal points of the interval $(0,1)$, if y satisfies the boundary value problem $y^{i v}+81 y=81 x^{2}, y(0)=y(1)=y^{\prime \prime}(0)=y^{\prime \prime}(1)=0$ by taking the step size $\mathrm{h}=3$.
[4+6]
4. Using fourth order Runge-Kutta method, solve the differential equation $\frac{d^{2} y}{d x^{2}}=x\left(\frac{d y}{d x}\right)^{2}-y^{2}$ at $x=0.2$ with the initial conditions as $x=0, y=1$ and $y^{\prime}=0$.
5. Applying Milne's method, find the solution of $\frac{d y}{d x}=x-y^{2}$ in the range $0 \leq x \leq 1$ with the boundary condition $y=0$ at $x=0$.
6. Solve the Poisson equation $u_{x x}+u_{y y}=-81 x y$, where $0<x<1$ and $0<y<1$. Given that $u(0, y)=0 ; u(x, 0)=0 ; u(1, y)=100$ and $u(x, 1)=100$ using the step size $h=1 / 3$.
7. (a) Using Crank-Nicholson method, obtain the solution of the differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=16 \frac{\partial u}{\partial t}, \text { where } 0<x<1, t>0
$$

subject to conditions $u(x, 0)=0, u(0, t)=0$ and $u(1, t)=100 t$. Compute u for one time step with $h=0.25$ by Gauss-Seidel iteration method.
(b) Using Schmidt method, obtain the solution of the one-dimensional heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \text { where } 0 \leq x \leq 1
$$

subject to the condition $u(0, t)=u(1, t)=0$ and $u(x, 0)=\sin \pi x$. Carry out computations for two levels taking $h=\frac{1}{3}$ and $k=\frac{1}{36}$.

