

Registration No.: Date and Session::

ST.JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc. (PHYSICS) – I SEMESTER

SEMESTER EXAMINATION: October 2023

(Examination Conducted in November/December 2023)

PH 7221-MATHEMATICAL PHYSICS

(Current batch of students only)

Time: 2 hours

Maximum marks: 50

This question paper has 1 printed pages and 2 parts

PART A

	PART AAnswer any FIVE of the following questions. Each question carries 7 marks. $[5 \times 7 =$	= 35]	
1.	(a) Write all possible equations of transformation for a mixed tensor of rank four (b) If A_{kl}^{ij} is a tensor, prove that a double contraction yields an invariant	[4] [3]	
2.	(a) Using the Method of Separation of Variables solve $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$ where $u(x,0) = 6e^{-3x}$	[7]	
3.	 (a) Express f(x) = 4x³ + 6x² + 7x + 2 in terms of Legendre Polynomials. (b) Using Method of Characteristics find the general solution of the quasilinear Partial Differe Equation a ∂u/∂x + ∂u/∂t = 0 	[4] ntial [3]	
4.	(a) State Bessel's differential equation. Write Spherical Bessel Functions.(b) What are Cauchy-Riemann conditions and why are they important in complex analysis?	[4] [3]	
5.	 (a) State and explain Cauchy's theorem. (b) Calculate the contour integral of f(z) = z² along the unit circle z = 1 in the counter clocky direction and show that it satisfies Cauchy's theorem. 	[3] wise [4]	
6.	(a) Explain the concept of frequency domain and time domain in the context of Fourtransforms.(b) Describe the properties of 1) Linearity and 2) time-shifting with reference to Fourtransforms.	[3]	
7.	(a) Find the Fourier Transform of a Gaussian function.(b) How does the choice of a windowing function such as a rectangular function affect the Fourier transform of a function?	[5] urier [2]	

PART B

Solve any **THREE** of the following problems. Each problem carries 5 marks. $[3 \times 5 = 15]$

- 8. A rectangular plate bounded by the lines x=0, x=a; y=0, y=b has an initial distribution of temperature given by $u = Asin \frac{\pi x}{a}sin \frac{\pi y}{b}$ the edges are kept at zero temperature and the plane faces are impervious to heat. Determine the temperature distribution at a later time t
- 9. Prove the recurrence formulae for Hermite Polynomials $H'_n(x) = 2nH_{n-1}(x)$
- 10. Evaluate $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ using residue theorem.
- 11. Find the power spectrum of an exponential decaying function.