ST.JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc. (PHYSICS) - I SEMESTER

 SEMESTER EXAMINATION: October 2023

 SEMESTER EXAMINATION: October 2023
 (Examination Conducted in November/December 2023)

 PH 7221-MATHEMATICAL PHYSICS

 PH 7221-MATHEMATICAL PHYSICS
 (Current batch of students only)

Time: 2 hours
Maximum marks: 50
This question paper has 1 printed pages and 2 parts
PART A
Answer any FIVE of the following questions. Each question carries 7 marks.
$[5 \times 7=35]$

1. (a) Write all possible equations of transformation for a mixed tensor of rank four
(b) If $A_{k l}^{i j}$ is a tensor, prove that a double contraction yields an invariant
2. (a) Using the Method of Separation of Variables solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}$
3. (a) Express $f(x)=4 x^{3}+6 x^{2}+7 x+2$ in terms of Legendre Polynomials.
(b) Using Method of Characteristics find the general solution of the quasilinear Partial Differential Equation $a \frac{\partial u}{\partial x}+\frac{\partial u}{\partial t}=0$
4. (a) State Bessel's differential equation. Write Spherical Bessel Functions.
(b) What are Cauchy-Riemann conditions and why are they important in complex analysis?
5. (a) State and explain Cauchy's theorem.
(b) Calculate the contour integral of $f(z)=z^{2}$ along the unit circle $|z|=1$ in the counter clockwise direction and show that it satisfies Cauchy's theorem.
6. (a) Explain the concept of frequency domain and time domain in the context of Fourier transforms.
(b) Describe the properties of 1) Linearity and 2) time-shifting with reference to Fourier transforms.
7. (a) Find the Fourier Transform of a Gaussian function.
(b) How does the choice of a windowing function such as a rectangular function affect the Fourier transform of a function?

PART B
Solve any THREE of the following problems. Each problem carries 5 marks.
8. A rectangular plate bounded by the lines $x=0, x=a ; y=0, y=b$ has an initial distribution of temperature given by $u=A \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}$ the edges are kept at zero temperature and the plane faces are impervious to heat. Determine the temperature distribution at a later time t
9. Prove the recurrence formulae for Hermite Polynomials $H_{n}^{\prime}(x)=2 n H_{n-1}(x)$
10. Evaluate $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$ using residue theorem.
11. Find the power spectrum of an exponential decaying function.

