

Registration Number: Date & Session:

ST JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc. PHYSICS – III SEMESTER SEMESTER EXAMINATION: OCTOBER 2023 (Examination conducted in November /December 2023) <u>PH 9120: QUANTUM MECHANICS II</u> (For current batch students only)

Time: 2 Hours

Max Marks: 50

This paper contains 4 printed pages and 2 parts

PART A

Answer any <u>FIVE</u> full questions.

- 1. What is parity operator? Show that if potential energy function V(x)=V(-x) then parity operator commutes with Hamiltonian
- 2. a) Derive an expression for the first order perturbation to the energy for the nondegenerate case

b) The momentum operator is given $\hat{P} = -i\hbar(\frac{\partial}{\partial r} + \frac{1}{r})$ find the expectation value of \hat{P} in the ground state of the hydrogen atom (The wave function for the ground state of Hydrogen atom is: $\psi_{100}(r,\theta,\phi) = \frac{1}{\sqrt{\pi}a^3}e^{-r/a}$ (5+2)

3. a)The Hydrogen Atom wave function is given as:

$$\psi_{nlm}(r,\theta,\phi) = \sqrt{\left(\frac{2}{na}\right)^3} \frac{(n-l-1)!}{2n[(n+l)!]^3} e^{-r/na} \left(\frac{2r}{na}\right)^l L_{n-l-1}^{2l+1} \left(\frac{2r}{na}\right) Y_l^m(\theta,\phi)$$

where $Y_l^m(\theta, \phi) = (-1)^{|m|} \sqrt{\frac{2l+1}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}} P_l^m(\cos\theta) e^{im\phi}$ are the spherical harmonics compute Y_{00} and Y_{10}

b) Find the ground state energy of an anisotropic harmonic oscillator described by the potential $V(x, y, z) = \frac{1}{2}m\omega^2 x^2 + 2m\omega^2 y^2 + 8m\omega^2 x^2$ in units $\hbar\omega$ (4+3)

4. a) Write the Schrodinger equation for the hydrogen atom using Spherical Polar coordinate system

(5x7=35)

b) The problem of determining the differential cross section($\frac{d\sigma}{d\Omega}$) always reduces to that of obtaining scattering amplitude $f(\theta, \phi)$. Justify. (3+4)

- 5. Consider a one dimensional potential well without any rigid walls, using WKB approximation to obtain the quantization condition of energy levels of bound states.
- 6. Show that the transition probability per unit time for a system to make a transition from initial state 'm' to final state 'k', where m- is a discrete state and k- is one among the set of final density of states is given by $w = \frac{2\pi}{\hbar} |\langle k_j | H' | m \rangle|^2 \rho(E_j)$ Where, the symbols have usual meaning.
- 7. Calculate the scattering amplitude for a spherical symmetry potential in the first order Born approximation and discuss its condition of validity.

<u>PART-B</u> Answer any 3 questions (3x5=15)

- 8. If the perturbation H'=ax where a is a constant, is added to the infinite square well potential $V(x) = \begin{cases} 0 & 0 \le x \ge a \\ \infty & Otherwise \end{cases}$ Find the first order correction to the ground state energy. $\psi_n = \sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a}$
- 9. Consider a system of two non-interacting identical fermions, each of mass m in an infinite square well potential of width a . (Take the potential inside the well to be zero and ignore spin). Find the composite wave function for the system with total energy $\frac{5\pi^2\hbar^2}{2ma^2}$. Usual wave function for the particle in a box is $\psi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$
- 10. A particle, initially (i.e t→-∞) in its ground state in an infinite potential well whose walls are located at x=0 and x=a, is subject at time t=0 to a time-dependent

perturbation $v(t) = \varepsilon \hat{x} e^{-t^2}$. Where ε is a small real number. Calculate the probability that the particle will be found in its first excited state after sufficiently long time(i.e t→+∞). (use: $\int_{0}^{a} x \sin(\frac{2\pi x}{a}) \sin(\frac{\pi x}{a}) dx = -\frac{8a^2}{9\pi^2}$)

11. Calculate the differential scattering cross-section in the first order Born approximation for a central potential $V(r)=Z_1Z_2e^2/r$. Where, Z_1e and Z_2e are the charges of the projectile and target particles respectively.

[Constants: h=6.626070x10⁻³⁴ J s (Planck's constant), 1eV = $1.6x10^{-19}$ J (electron volt to Joules), c=2.99792458x10⁸ m/s (speed of light), 1Å = $1x10^{-10}$ m (Angstrom to meters), e = $1.602176x10^{-19}$ C (electronic charge), ϵ_0 = $8.85418782x10^{-12}$ m⁻³kg⁻¹s⁴A² (permittivity of free space), m_{proton}=1.672621898x10⁻²⁷kg (mass of proton), m_{electron}=9.10938356x10⁻³¹kg (mass of electron), m_{neutron}=1.674927471x10⁻²⁷kg (mass of neutron), a = $5.029x10^{-10}$ m (Bohr radius), α = 1/137 (Fine Structure Constant), G=6.674x10⁻¹¹m³kg⁻¹s⁻² (Gravitational constant), M₀=1.9891x10³⁰ kg (Solar mass), R₀=6.9x10⁸ m (Sun's Radius), σ = $5.67x10^{-8}$

Table of (some) Integrals

Gamma Function:
$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$
$\Gamma(n) = (n-1)!$
$\Gamma(\frac{1}{2}+n) = \frac{(2n)!}{4^n n!} \sqrt{\pi}$

(a)
$$\int_{0}^{\infty} e^{-2bt} dt = \frac{1}{2b}$$

(b) $\int_{0}^{\infty} t e^{-2bt} dt = \frac{1}{4b^2}$
(c) $\int \frac{t^2}{(t^2+b^2)^2} dt = \left(-\frac{t}{(2b^2+2t^2)} + \frac{1}{2b} \tan^{-1}\left(\frac{t}{b}\right)\right)$
(c) $\int \frac{1}{(t^2+b^2)^3} dt = \frac{3}{2b^5} \left(\frac{5/3b^3t+bt^3}{(b^2+t^2)^2} + \tan^{-1}\left(\frac{t}{b}\right)\right)$

(m)
$$\int \frac{1}{(t^2+b^2)^3} dt = \frac{3}{8b^5} \left(\frac{5/3b^3t+bt^3}{(b^2+t^2)^2} + \tan^{-1}\left(\frac{t}{b}\right) \right)$$

(n) $\int \frac{t^2}{(t^2+b^2)^3} dt = \frac{1}{(t^2+b^2)^3} \left(\frac{bt^5+8/3b^3t^3-b^5t}{(b^2+b^2)^3} + \tan^{-1}\left(\frac{t}{b}\right) \right)$

(i)
$$\int \frac{t^4}{(t^2+b^2)^4} dt = \frac{1}{16b^3} \left(\frac{bt^5+8/3b^3t^3-b^5t}{(b^2+t^2)^3} + \tan^{-1}\left(\frac{t}{b}\right) \right)$$

(o) $\int \frac{t^4}{(t^2+b^2)^4} dt = \frac{1}{16b^3} \left(\frac{bt^5+8/3b^3t^3-b^5t}{(b^2+t^2)^3} + \tan^{-1}\left(\frac{t}{b}\right) \right)$

(p)
$$\int \frac{t^6}{(t^2+b^2)^4} dt = \frac{1}{16b} \left(\frac{11bt^5 + 40/3b^3t^3 - 5b^5t}{(b^2+t^2)^3} + 5\tan^{-1}\left(\frac{t}{b}\right) \right)$$

(q)
$$\int \sqrt{a/x-1} \, dx = x \sqrt{a/x-1} + a \tan^{-1}(\sqrt{a/x-1})$$

(f) $\int_0^\infty t^5 e^{-2bt} dt = \frac{15}{8b^6}$

(c) $\int_0^\infty t^2 e^{-2bt} dt = \frac{1}{4b^3}$

(d) $\int_0^\infty t^3 e^{-2bt} dt = \frac{3}{8b^4}$

(e) $\int_0^\infty t^4 e^{-2bt} dt = \frac{3}{4b^5}$

PH 9120_A_23 3

(g)
$$\int_{0}^{\infty} t^{6} e^{-2bt} dt = \frac{45}{8b^{7}}$$

(r) $\int \sqrt{1-ax} dx = -\frac{2(1-ax)^{3/2}}{3a}$
(h) $\int \frac{1}{t^{2}+b^{2}} dt = \frac{1}{b} \tan^{-1} \left(\frac{t}{b}\right)$
(s) $\int \sqrt{1-ax^{2}} dx = \frac{1}{2}x\sqrt{1-ax^{2}} + \frac{\sin^{-1}\sqrt{a}x}{2\sqrt{a}}$
(i) $\int \frac{1}{(t^{2}+b^{2})^{2}} dt = \frac{1}{2b^{3}} \left(\frac{bt}{(b^{2}+t^{2})} + \tan^{-1}\left(\frac{t}{b}\right)\right)$
(t) $\int_{-\infty}^{\infty} e^{-\alpha t^{2}+i\omega t} dt = \sqrt{\frac{\pi}{\alpha}} e^{-\frac{\omega^{2}}{4\alpha}}$

(j)
$$\int_{0}^{\infty} t^{4} e^{-\alpha^{2}t^{2}} dt = \frac{3\sqrt{\pi}}{8\alpha^{5}}$$
 (u) $\int_{0}^{\infty} t^{n} e^{-st} dt = \frac{n!}{s^{n+1}}$ (Laplace Transform)
(k) $\int_{0}^{\infty} t^{4} e^{-\alpha^{2}t^{2}} dt = \frac{1}{8\alpha^{5}} \left(15t^{5}b + 40b^{3}5^{3} + 33b^{5}t + 5t^{2}t^{2} +$

(c)
$$\int \frac{1}{(t^2+b^2)^4} dt = \frac{1}{16b^7} \left(\frac{15t^5b+40b^35^3+33b^5t}{(3t^6+9bt^4+9b^3t^2+b^5)} + 5\tan^{-1}\left(\frac{t}{b}\right) \right)$$