ST JOSEPH'S UNIVERSITY, BENGALURU -27
 M.Sc. PHYSICS - III SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2023
 (Examination conducted in November /December 2023)
 PH 9120: QUANTUM MECHANICS II (For current batch students only)

Time: 2 Hours
Max Marks: 50
This paper contains 4 printed pages and 2 parts

PART A

Answer any FIVE full questions.

$(5 \times 7=35)$

1. What is parity operator? Show that if potential energy function $V(x)=V(-x)$ then parity operator commutes with Hamiltonian
2. a) Derive an expression for the first order perturbation to the energy for the nondegenerate case
b) The momentum operator is given $\hat{P}=-i \hbar\left(\frac{\partial}{\partial r}+\frac{1}{r}\right)$ find the expectation value of \hat{P} in the ground state of the hydrogen atom (The wave function for the ground state of Hydrogen atom is: $\quad \psi_{100}(r, \theta, \phi)=\frac{1}{\sqrt{\pi a^{3}}} e^{-r / a}$
3. a)The Hydrogen Atom wave function is given as:

$$
\psi_{n l m}(r, \theta, \phi)=\sqrt{\left(\frac{2}{n a}\right)^{3} \frac{(n-l-1)!}{2 n[(n+l)!]^{3}}} e^{-r / n a}\left(\frac{2 r}{n a}\right)^{l} L_{n-l-1}^{2 l+1}\left(\frac{2 r}{n a}\right) Y_{l}^{m}(\theta, \phi)
$$

where $\quad Y_{l}^{m}(\theta, \phi)=(-1)^{|m|} \sqrt{\frac{2 l+1}{4 \pi} \frac{(l-|m|)!}{(l+|m|)!}} P_{l}^{m}(\cos \theta) e^{i m \phi} \quad$ are the spherical harmonics compute Y_{00} and Y_{10}
b) Find the ground state energy of an anisotropic harmonic oscillator described by the potential $V(x, y, z)=\frac{1}{2} m \omega^{2} x^{2}+2 m \omega^{2} y^{2}+8 m \omega^{2} x^{2}$ in units $\hbar \omega$
4. a) Write the Schrodinger equation for the hydrogen atom using Spherical Polar coordinate system
b) The problem of determining the differential cross section($\frac{d \sigma}{d \Omega}$) always reduces to that of obtaining scattering amplitude $f(\theta, \phi)$. Justify.
5. Consider a one dimensional potential well without any rigid walls, using WKB approximation to obtain the quantization condition of energy levels of bound states.
6. Show that the transition probability per unit time for a system to make a transition from initial state ' m ' to final state ' k ', where m - is a discrete state and k - is one among the set of final density of states is given by $\left.w=\frac{2 \pi}{\hbar}\left|\left\langle k_{j}\right| H^{\prime}\right| m\right\rangle\left.\right|^{2} \rho\left(E_{j}\right)$ Where, the symbols have usual meaning.
7. Calculate the scattering amplitude for a spherical symmetry potential in the first order Born approximation and discuss its condition of validity.

PART-B

Answer any 3 questions

(3x5=15)

8. If the perturbation $\mathrm{H}^{\prime}=\mathrm{ax}$ where a is a constant, is added to the infinite square well potential $V(x)=\left\{\begin{array}{cl}0 & 0 \leq x \geq a \\ \infty & \text { Otherwise }\end{array}\right.$ Find the first order correction to the ground state energy. $\quad \psi_{n}=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a}$
9. Consider a system of two non-interacting identical fermions, each of mass m in an infinite square well potential of width a . (Take the potential inside the well to be zero and ignore spin). Find the composite wave function for the system with total energy $\frac{5 \pi^{2} \hbar^{2}}{2 m a^{2}}$. Usual wave function for the particle in a box is $\psi_{n}=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a}$
10. A particle, initially (i.e $t \rightarrow-\infty$) in its ground state in an infinite potential well whose walls are located at $x=0$ and $x=a$, is subject at time $t=0$ to a time-dependent
perturbation $v(t)=\varepsilon \hat{x} \mathrm{e}^{-t^{2}}$. Where ε is a small real number. Calculate the probability that the particle will be found in its first excited state after sufficiently long time(i.e $t \rightarrow+\infty$). (use: $\int_{0}^{a} x \sin \left(\frac{2 \pi x}{a}\right) \sin \left(\frac{\pi x}{a}\right) d x=-\frac{8 a^{2}}{9 \pi^{2}}$)
11. Calculate the differential scattering cross-section in the first order Born approximation for a central potential $V(r)=Z_{1} Z_{2} e^{2} / r$. Where, $Z_{1} e$ and $Z_{2} e$ are the charges of the projectile and target particles respectively.
[Constants: $\mathbf{h = 6 . 6 2 6 0 7 0 \times 1 0 ^ { - 3 4 }} \mathrm{J} \mathrm{s}$ (Planck's constant), $\mathbf{1 e V}=1.6 \times 10^{-19} \mathrm{~J}$ (electron volt to Joules), $\mathbf{c}=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (speed of light), $\mathbf{1 \AA}=1 \times 10^{-10} \mathrm{~m}$ (Angstrom to meters), \mathbf{e} $=1.602176 \times 10^{-19} \mathrm{C}$ (electronic charge), $\varepsilon_{0}=8.85418782 \times 10^{-12} \mathrm{~m}^{-3} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}$ (permittivity of free space), $\boldsymbol{m}_{\text {proton }}=1.672621898 \times 10^{-27} \mathrm{~kg}$ (mass of proton), $\boldsymbol{m}_{\text {electron }}=9.10938356 \times 10^{-31} \mathrm{~kg}$ (mass of electron), $\boldsymbol{m}_{\text {neutron }}=1.674927471 \times 10^{-27} \mathrm{~kg}$ (mass of neutron), $a=5.029 \times 10^{-10} \mathrm{~m}$ (Bohr radius), $\boldsymbol{\alpha}=1 / 137$ (Fine Structure Constant), $\mathbf{G}=6.674 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ (Gravitational constant), $\mathbf{M}_{\odot}=1.9891 \times 10^{30} \mathrm{~kg}$ (Solar mass), $\mathbf{R}_{\odot}=6.9 \times 10^{8} \mathrm{~m}$ (Sun's Radius), $\boldsymbol{\sigma}=5.67 \times 10^{-8}$

Table of (some) Integrals

Gamma Function:
$\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$
$\Gamma(n)=(n-1)!$
$\Gamma\left(\frac{1}{2}+n\right)=\frac{(2 n)!}{4^{n} n!} \sqrt{\pi}$

(a) $\quad \int_{0}^{\infty} e^{-2 b t} d t=\frac{1}{2 b}$
(I) $\int \frac{t^{2}}{\left(t^{2}+b^{2}\right)^{2}} d t=\left(-\frac{t}{\left(2 b^{2}+2 t^{2}\right)}+\frac{1}{2 b} \tan ^{-1}\left(\frac{t}{b}\right)\right)$
(b) $\int_{0}^{\infty} t e^{-2 b t} d t=\frac{1}{4 b^{2}}$
(m) $\int \frac{1}{\left(t^{2}+b^{2}\right)^{3}} d t=\frac{3}{8 b^{5}}\left(\frac{5 / 3 b^{3} t+b t^{3}}{\left(b^{2}+t^{2}\right)^{2}}+\tan ^{-1}\left(\frac{t}{b}\right)\right)$
(c) $\int_{0}^{\infty} t^{2} e^{-2 b t} d t=\frac{1}{4 b^{3}}$
(n) $\int \frac{t^{2}}{\left(t^{2}+b^{2}\right)^{4}} d t=\frac{1}{16 b^{5}}\left(\frac{b t^{5}+8 / 3 b^{3} t^{3}-b^{5} t}{\left(b^{2}+t^{2}\right)^{3}}+\tan ^{-1}\left(\frac{t}{b}\right)\right)$
(d) $\int_{0}^{\infty} t^{3} e^{-2 b t} d t=\frac{3}{8 b^{4}}$
(o) $\int \frac{t^{4}}{\left(t^{2}+b^{2}\right)^{4}} d t=\frac{1}{16 b^{3}}\left(\frac{b t^{5}+8 / 3 b^{3} t^{3}-b^{5} t}{\left(b^{2}+t^{2}\right)^{3}}+\tan ^{-1}\left(\frac{t}{b}\right)\right)$
(e) $\int_{0}^{\infty} t^{4} e^{-2 b t} d t=\frac{3}{4 b^{5}}$
(p) $\int \frac{t^{6}}{\left(t^{2}+b^{2}\right)^{4}} d t=\frac{1}{16 b}\left(\frac{11 b t^{5}+40 / 3 b^{3} t^{3}-5 b^{5} t}{\left(b^{2}+t^{2}\right)^{3}}+5 \tan ^{-1}\left(\frac{t}{b}\right)\right)$
(f) $\quad \int_{0}^{\infty} t^{5} e^{-2 b t} d t=\frac{15}{8 b^{6}}$
(q) $\int \sqrt{a / x-1} d x=x \sqrt{a / x-1}+a \tan ^{-1}(\sqrt{a / x-1})$
(g) $\int_{0}^{\infty} t^{6} e^{-2 b t} d t=\frac{45}{8 b^{7}}$
(r) $\int \sqrt{1-a x} d x=-\frac{2(1-a x)^{3 / 2}}{3 a}$
(h) $\int \frac{1}{t^{2}+b^{2}} d t=\frac{1}{b} \tan ^{-1}\left(\frac{t}{b}\right)$
(s) $\int \sqrt{1-a x^{2}} d x=\frac{1}{2} x \sqrt{1-a x^{2}}+\frac{\sin ^{-1} \sqrt{a} x}{2 \sqrt{a}}$
(i) $\int \frac{1}{\left(t^{2}+b^{2}\right)^{2}} d t=\frac{1}{2 b^{3}}\left(\frac{b t}{\left(b^{2}+t^{2}\right)}+\tan ^{-1}\left(\frac{t}{b}\right)\right)$
(t) $\quad \int_{-\infty}^{\infty} e^{-\alpha t^{2}+i \omega t} d t=\sqrt{\frac{\pi}{\alpha}} e^{-\frac{\omega^{2}}{4 \alpha}}$
(j) $\int_{0}^{\infty} t^{4} e^{-\alpha^{2} t^{2}} d t=\frac{3 \sqrt{\pi}}{8 \alpha^{5}}$
(u) $\int_{0}^{\infty} t^{n} e^{-s t} d t=\frac{n!}{s^{n+1}} \quad$ (Laplace Transform)
(k) $\int \frac{1}{\left(t^{2}+b^{2}\right)^{4}} d t=\frac{1}{16 b^{7}}\left(\frac{15 t^{5} b+40 b^{3} 5^{3}+33 b^{5} t}{\left(3 t^{6}+9 b t^{4}+9 b^{3} t^{2}+b^{5}\right)}+5 \tan ^{-1}\left(\frac{t}{b}\right)\right)$

