Registration Number:

Date & Session:

ST JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc. Physics – III SEMESTER SEMESTER EXAMINATION: OCTOBER 2023 (Examination conducted in November /December 2023) PH 9222: Atomic and Molecular Physics (For current batch students only)

Time: 2 Hours

Max Marks: 50

This paper contains Two printed pages and Two parts

PART-A

Answer any <u>FIVE</u> questions. Each question carries <u>SEVEN</u> Marks.

[5 x 7 = 35]

- 1. With a neat sketch, describe the process of Zeeman splitting pattern for low, high, and intermediate magnetic fields?
- 2. (a). With a neat sketch, describe the different modes of vibration of CO₂ molecules.
 (b). Explain, why the diatomic molecules such as CO, HF will show a rotational spectrum whereas N₂, O₂, H₂ will not?
 (c). why, the intensity of *I* = 0 → *I* = 1 is often not the most intense rotational line?

[3+2+2]

- With a neat diagram, describe the elastic (Rayleigh) and inelastic (Raman) scattering in Raman spectroscopy. Obtain an expression for polarization using classical Raman theory.
- 4. Explain the physical principle and resonance condition of Nuclear magnetic resonance with a suitable diagram. How does the NMR Frequency relate to the external magnetic field?
- 5. (a). With a neat sketch, describe the Beer lambert's law.
 - (b). Outline the basic requirements, working principle of UV-Visible spectrometer.

[3+4]

- 6. Describe the processes of absorption, fluorescence, phosphorescence, internal conversion, intersystem crossing, and vibrational relaxation using a Jablonski diagram?
- 7. Explain the spin arrangements and hyperfine slitting components for unpaired electron coupling with two equivalent nuclei of spin $I = \frac{1}{2}$ in electron spin resonance spectrum. The ESR spectrum shows three lines with intensities 1:2:1 for the above condition. Why?

PH_9222_A_23

PART-B

Answer any <u>THREE</u> questions. Each question carries <u>FIVE</u> Marks.

[3 x 5 = 15]

- 8. The Raman line associated with a vibrational mode which is both Raman and infrared active is found at 4600 Å when excited by light of wavelength 4358 Å. Calculate the wavelength of the corresponding infrared band.
- 9. Find the Zeeman structure of a spectral line which results from the transition and also find Lande g factor values for each energy levels.

$${}^{4}F_{\frac{3}{2}} \rightarrow {}^{4}D_{\frac{5}{2}}$$

- 10. Calculate the frequencies for the quadrupolar transitions, assuming an axial filed gradient. The spin of 35 Cl is I=3/2.
- 11. A particular NMR instrument operates at 30.256 MHz. What magnetic fields are required to bring a proton nucleus and a ¹³C molecules to the resonance frequency? [magnetic moment of proton = $2.7927 \mu_N$ and magnetic moment of ¹³c = $0.7022 \mu_N$.

Speed of light in vacuum (c)	2.997925 x 10 ⁸ ms ⁻¹
Charge of electron (e)	1.6021 x 10 ⁻¹⁹ C
Rest mass of electron (m)	9.109 x 10 ⁻³¹ kg
Atomic mass unit (m _u)	1.6604 x 10 ⁻²⁷ kg
Electron radius (r _e)	2.828 x 10 ⁻¹⁵ m
1 Angstrom unit (Å)	10 ^{−10} m
Avogadro's number (N _A)	6.02252 x 10 ²⁶ kmol ⁻¹
Boltzmann constant (k _B)	1.38054 x 10 ⁻²³ jK ⁻¹
Thermal energy at 300K (k _B T)	0.0258 J
Planck's constant (h)	6.626 x 10 ⁻³⁴ Js
Permeability of free space (μ_0)	4π x 10 ⁻⁷ Hm ⁻¹
Permittivity of free space (ϵ_0)	8.854 x 10 ⁻¹² Fm ⁻¹
Rydberg constant for Hydrogen (R _H)	1.0967758 x 10 ⁷ m ⁻¹
Universal gas constant (Ru = N _A k _B)	8.3143 x 10 ³ Jkmol ⁻¹ K

List of Physics Constants

PH_9222_A_23