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ST 9120: STOCHASTIC PROCESSES 
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Time: 2 Hours                  Max Marks: 50 

This paper contains TWO printed pages and ONE part. 

 

PART-A 

 

I. Answer any FIVE questions out of SEVEN questions: 

 

1. A) Define Markov chain and show that the Markov chain {𝑋𝑛, 𝑛 = 0,1,2, . . . }is completely 

determined by transition probability matrix ‘P’ and the initial probability distribution {pi} 

defined as 𝑃{𝑋0 = 𝑖0} = 𝑝𝑖 ≥ 0. 

B) Let {𝑋𝑛, 𝑛 = 0,1,2, . . . }be a Markov chain with state space 𝑆 = {1,2,3}and with the 

following TPM 

𝑃 = [
0.5 0.5 0
0 0.3 0.7
0 0.2 0.8

] 

Find.      (i) 𝑃(𝑋4 = 2/𝑋2 = 1)                                  (ii)  𝑃(𝑋5 = 3/𝑋4 = 3) 

                                                                                                                                  (5+3+2) 

2. A) Let {𝑋𝑛, 𝑛 = 0,1,2, . . . } be a sequence of i.i.d random variables then, show that {𝑌𝑛}is a 

Markov chain where, 𝑌𝑛 = ∑ 𝑋𝑖
𝑛
𝑖=1 . 

          B) Define communicating, absorbing, persistent and transient states of the Markov chain. 

                                                                                                                                                  (5+5) 

3. A) Let {𝑋𝑛, 𝑛 = 0,1,2, . . . }be a Markov chain with state space 𝑆 = {1,2,3,4} and one step   

TPM  𝑃 =

[
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Classify the states as recurrent or transient. 

B) if i j and ‘i’ is persistent then show that ‘j’ is also persistent.                           (5+5) 
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4. A) Explain Mean Recurrence time. 

B)  Consider a Gambler’s ruin problem with p=0.6, N= 10 and j=4. Find the probability that 

Player ‘A’ losing all the amount given that Player ‘A’ has 4 units of amount. 

C) Find the probability of ultimate extinction if probability generating function of offspring  

     distribution is ∅(𝑠) =
1

4
𝑠2 +

5

8
𝑠 +

1

8

 
      (3+3+4) 

5. A) Define Poisson process with an example. Prove that for a Poisson process {𝑁(𝑡): 𝑡 > 0} 

    conditional distribution of  𝑁(𝑠)/𝑁(𝑡) follows Binomial distribution if 𝑠 < 𝑡. 

B) Define renewal function Obtain the renewal equation for the renewal process with 

     Inter arrival time as U (0,1).            (5+5) 

6. A) Define birth death process. 

B) Prove that in a Poisson process  

(i) Inter arrival time follows exponential  

(ii) Waiting time follows Gamma distribution. 

C) Define branching process. Find the mean and variance of 10th population size if  

     offspring distribution takes values 0,1 and 2 with respective probabilities 
1

8
,  

5

8
 and 

1

4
.  

                               (1+5+4)                         

7. A) For a branching process {𝑋𝑛} with 𝑋0 = 1,  ∅( ) and ∅𝑛() as the probability generating 

function of 𝜉𝑖 (off spring distribution) and 𝑋𝑛 , prove that 

(i) ∅𝑛+1(𝑠) = ∅𝑛(∅(𝑠))  

(ii) ∅𝑛+1(𝑠) = ∅(∅𝑛(𝑠)) 

B) Define martingale. For a sequence of independent random variables {𝑈𝑖: 𝑖 = 1,2,3, . . } be  

     each having uniform distribution over (0,1), prove that {𝑋𝑛: 𝑛 ≥ 0} is a martingale,  

     where  𝑋𝑛 = 2𝑛 ∏ 𝑈𝑖
𝑛
𝑖=1 .         (6+4) 

      


