

Registration Number:

Date & session:

ST JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc. (STATISTICS) – III SEMESTER SEMESTER EXAMINATION: OCTOBER 2023 (Examination conducted in November /December 2023) <u>ST 9120: STOCHASTIC PROCESSES</u> (For current batch students only)

Time: 2 Hours

Max Marks: 50

This paper contains <u>TWO</u> printed pages and <u>ONE</u> part.

PART-A

I. Answer any <u>FIVE</u> questions out of <u>SEVEN</u> questions:

A) Define Markov chain and show that the Markov chain {*X_n*, *n* = 0,1,2,...}is completely determined by transition probability matrix 'P' and the initial probability distribution {p_i} defined as *P*{*X*₀ = *i*₀} = *p_i* ≥ 0.

B) Let $\{X_n, n = 0, 1, 2, ...\}$ be a Markov chain with state space $S = \{1, 2, 3\}$ and with the following TPM

Find. (i)
$$P(X_4 = 2/X_2 = 1)$$

$$P = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0 & 0.3 & 0.7 \\ 0 & 0.2 & 0.8 \end{bmatrix}$$
(ii) $P(X_5 = 3/X_4 = 3)$
(5+3+2)

2. A) Let $\{X_n, n = 0, 1, 2, ...\}$ be a sequence of i.i.d random variables then, show that $\{Y_n\}$ is a Markov chain where, $Y_n = \sum_{i=1}^n X_i$.

B) Define communicating, absorbing, persistent and transient states of the Markov chain.

(5+5)

3. A) Let $\{X_n, n = 0, 1, 2, ...\}$ be a Markov chain with state space $S = \{1, 2, 3, 4\}$ and one step TPM $P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ \frac{1}{2} & \frac{1}{2} & 0 & 0\\ \frac{1}{2} & \frac{1}{2} & 0 & 0\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}\\ 0 & 0 & 0 & 1 \end{bmatrix}$

Classify the states as recurrent or transient.

B) if $i \leftrightarrow j$ and 'i' is persistent then show that 'j' is also persistent. (5+5)

ST 9120_B_23

4. A) Explain Mean Recurrence time.

B) Consider a Gambler's ruin problem with p=0.6, N= 10 and j=4. Find the probability that Player 'A' losing all the amount given that Player 'A' has 4 units of amount.

C) Find the probability of ultimate extinction if probability generating function of offspring

distribution is $\phi(s) = \frac{1}{4}s^2 + \frac{5}{8}s + \frac{1}{8}$ (3+3+4)

- 5. A) Define Poisson process with an example. Prove that for a Poisson process $\{N(t): t > 0\}$ conditional distribution of N(s)/N(t) follows Binomial distribution if s < t.
 - B) Define renewal function Obtain the renewal equation for the renewal process with Inter arrival time as U (0,1). (5+5)
- 6. A) Define birth death process.
 - B) Prove that in a Poisson process
 - (i) Inter arrival time follows exponential
 - (ii) Waiting time follows Gamma distribution.
 - C) Define branching process. Find the mean and variance of 10th population size if offspring distribution takes values 0,1 and 2 with respective probabilities $\frac{1}{8}$, $\frac{5}{8}$ and $\frac{1}{4}$.
- 7. A) For a branching process $\{X_n\}$ with $X_0 = 1$, $\phi()$ and $\phi_n()$ as the probability generating function of ξ_i (off spring distribution) and X_n , prove that
 - (i) $\emptyset_{n+1}(s) = \emptyset_n(\emptyset(s))$
 - (ii) $\varphi_{n+1}(s) = \varphi(\varphi_n(s))$
 - B) Define martingale. For a sequence of independent random variables $\{U_i: i = 1, 2, 3, ..\}$ be each having uniform distribution over (0,1), prove that $\{X_n: n \ge 0\}$ is a martingale, where $X_n = 2^n \prod_{i=1}^n U_i$. (6+4)

(1+5+4)