

Register Number: Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 M.Sc. PHYSICS - I SEMESTER SEMESTER EXAMINATION: OCTOBER 2019

PH 7218 – MATHEMATICAL PHYSICS

Time- 2^{1}_{2} hrs

Max Marks-70

This paper contains <u>TWO</u> printed pages and <u>TWO</u> parts

<u> PART – A</u>

Answer any <u>FIVE</u>. Each question carries <u>10</u> marks.

[5 x 10 = 50]

1. Let $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ Find matrix P such that P⁻¹AP is a diagonal matrix.

2. If $u - v = (x - y)(x^2 + 4xy + y^2)$ and f(z) = u + iv is an analytic function of z = x + iy, find f(z) in terms of z by Milne Thomson method.

3. Use Cauchy's integral formula to evaluate $\oint_{\mathcal{C}} \frac{z^2+1}{z^2-1} dz$, where C is Contour,

(a)
$$|z| = \frac{3}{2}$$
, (b) $|z - 1| = 1$, (c) $|z| = \frac{1}{2}$. [4+3+3]

4. Find the Fourier series expansion for $f(x) = x + \frac{x^2}{4}$, $-\pi \le x \le \pi$.

- 5. (a) Find the Laplace transform of the function $f(t) = \left(\frac{2t}{3}\right), 0 \le t \le 3$. (b) Find the Fourier transform of $A = xe^{-ax^2}, a > 0$.
- 6. Expand the function $f(x) = \begin{cases} 0, & -1 < x < 0 \\ 1, & 0 < x < 0 \end{cases}$ in terms of Legendre polynomials.
- 7. Prove the following recurrence relations using Hermite polynomial equation

(a)
$$2nH_{n-1}(x) = H'_n(x)$$

(b) $2xH_n(x) = 2nH_{n-1}(x) + H_{n+1}(x)$.

[6+4]

[5+5]

<u> PART – B</u>

Answer any <u>FOUR</u>. Each question carries <u>5</u> marks.

 $[4 \times 5 = 20]$

8. Show that
$$\begin{bmatrix} cos \phi & 0 & sin \phi \\ sin \theta sin \phi & cos \theta & -sin \theta cos \phi \\ -cos \theta sin \phi & sin \theta & cos \theta cos \phi \end{bmatrix}$$
 is an orthogonal matrix through

all three conditions.

9. (a). Examine the continuity of the following

$$f(z) = \begin{cases} \frac{z^3 - iz^2 + z - i}{z - i}, & z \neq i \\ 0, & z = i \end{cases} \text{ at } z = i.$$

(b). Show that the function f(z) defined by $f(z) = \begin{cases} \frac{Re(z)}{z}, z \neq 0\\ 0, z = 0 \end{cases}$ is not

continuous at z = 0.

[3+2]

- 10. Prove Parseval's identity.
- Define C₄ group with example. Explain the term Isomorphism and Homomorphism through C₄ group elements.
- 12. Prove the identities $(i)e^{-1} = e$, $(ii)a^{-1}a = e$ and (iii)ea = a for all $a \in G$ follow from basic axiom. [2+2+1]
- 13. For the following concurrent force system, find the resultant in magnitude and direction.

