Time: 2 Hours

ST. JOSEPH'S UNIVERSITY, BENGALURU -27
M.Sc. (BIG DATA ANALYTICS) - I SEMESTER

SEMESTER EXAMINATION: OCTOBER 2023
(Examination Conducted in November/December 2023)
BDA 1221 - PROBABILITY \& STOCHASTIC PROCESSES
(For current batch students only)
This paper contains TWO printed pages and THREE parts Part A

Answer All the questions

Max Marks: 50
$2 \times 5=10$

1 The probability of passing a test is $1 / 4$. Suppose 3 students take this test. What is the probability that at least one will pass?
2 If X has the Binomial distribution with $n=12$ and $p=1 / 12$. What is the expectation and standard deviation of X ?
3 A die is rolled thrice. What is the probability that the sum on the three faces is 4
4 Write down the expansion of P (AUBUC)
5 Sketch a picture to explain the two types of errors in hypothesis testing

PART B

Answer any FIVE questions
6 If two students in a class share the same birthday, we call it a 'match'. If a class has 20 students, is the probability of a match greater than or less than $1 / 2$? What will be this probability if the class has 30 students?
7 Discuss how the Standard Normal, Chi Square and F tests are related? Which test do we use in ANOVA and why?
8 How is the Central Limit Theorem useful in testing of hypotheses?
9 Bag I contain 4 white and 6 black balls; Bag 2 contains 4 white and 3 black balls. One ball is drawn at random from one of the bags and it is found to be black. Find the probability that it was drawn from Bag I.

10 Distinguish between parametric and non-parametric tests. Which one would you choose, and when?
11 What is the 'Markovian property'? How is this property useful in modelling stochastic processes?
12 Imagine that every day in Bangalore is either 'sunny', 'cloudy' and 'rainy'. Sketch a Markov chain showing any typical transition between these states.

PART C

Answer Any TWO questions
$2 \times 10=20$
13(a) Distinguish between finite, countably infinite and uncountable sets.
(b) Connect this discussion to probability distributions, by comparing the binomial and the normal distributions
14(a) Explain the idea of a one-step and two-step probability transition matrix.
(b) If $\mathrm{P}(1)$ and $\mathrm{P}(2)$ are, respectively, the one-step and two-step probability transition matrices of a 3-state Markov chain, then show that $P(1)^{*} P(1)=P(2)[4]$
(c) Explain the idea of a steady state Markov process

15(a) Discuss, with illustrations, the rationale of testing a statistical hypothesis. How do we choose the null and alternate hypotheses? Distinguish between one-sided and twosided tests.
15(b) How do we compute the testing hypothesis, what is the p-value, and what is its role in accepting or rejecting the hypothesis?

