Registration Number:
Date \& Session:

ST. JOSEPH'S UNIVERSITY, BANGALORE-27
 M.Sc.(BIG DATA ANALYTICS)-I SEMESTER
 SEMESTER EXAMINATION-OCTOBER 2023
 (Examination conducted in November/December 2023) BDA1321 - LINEAR ALGEBRA AND LINEAR PROGRAMMING
 (For current batch students only)

Time: 2 Hours
Max. Marks: 50
The question paper contains TWO printed pages and THREE parts

Part A

Answer ALL the questions.
$5 \times 2=10$

1. Given $u=\left[\begin{array}{c}1 \\ -2\end{array}\right]$ and $v=\left[\begin{array}{c}2 \\ -5\end{array}\right]$. Find $4 u,(-3 v)$, and $4 u+(-3) v$.
2. Give a criterion for a non-empty subset of a vector space V to be a subspace of V.
3. Is the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(1+x, 1+y)$ a linear transformation? Justify your answer.
4. Find the area of the parallelogram spanned by the vectors $u_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $u_{2}=\left[\begin{array}{l}2 \\ 5\end{array}\right]$ in \mathbb{R}^{2}.
5. Define Linear Programming Problem (LPP) and write its general form.

Part B

Answer any FIVE questions.
$\mathbf{5} \times \mathbf{4}=\mathbf{2 0}$
6. Determine if the columns of the matrix $A=\left[\begin{array}{ccc}0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0\end{array}\right]$ are linearly independent.
7. Is the union of two subspaces of a vector space a subspace? Justify your answer.
8. For all $u, v \in \mathbb{R}^{n}$ and $c, d \in \mathbb{R}$, prove the following:
(a) $c(u+v)=c u+c v$.
(b) $(c+d) u=c u+d u$.
9. Find a solution to the following system :

$$
\begin{aligned}
3 x_{1}+5 x_{2}-4 x_{3} & =7 \\
-3 x_{1}-2 x_{2}+4 x_{3} & =-1 \\
6 x_{1}+x_{2}-8 x_{3} & =-4 .
\end{aligned}
$$

10. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is linear, $T(1,0)=(1,4)$ and $T(1,1)=(2,5)$. Find $T(2,1)$.
11. Is the following matrix a positive definite? Justify your answer:

$$
A=\left[\begin{array}{ccc}
1 & -1 & 4 \\
-1 & 2 & 1 \\
4 & 1 & 16
\end{array}\right]
$$

12. Show that the set $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}+3 x_{2}=5\right\}$ is convex.

Part C

Answer any TWO questions.

$$
2 \times 10=20
$$

13. a) For what values of h will y be in $\operatorname{span}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)$, if $v_{1}=\left[\begin{array}{c}1 \\ -1 \\ -2\end{array}\right], v_{2}=\left[\begin{array}{c}5 \\ -4 \\ -7\end{array}\right], v_{3}=\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right]$ and $y=\left[\begin{array}{c}-4 \\ 3 \\ h\end{array}\right]$.
b) Let $W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \in \mathbb{R}^{5}: a_{2}+a_{3}+a_{5}=0, a_{1}=a_{4}\right\}$ be a subspace. Find the basis and the dimension of W.
14. a) Diagonalize the following matrix:

$$
A=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

b) For the above matrix A, compute A^{21} using its diagonal form.
[4m]
15. Solve the following LPP using the graphical method:

$$
\text { Maximize } z=8000 x+7000 y
$$

subject to

$$
\begin{aligned}
3 x+y & \leq 66, \\
x+y & \leq 45 \\
x \geq 20, y & \leq 40 \\
x, y & \geq 0 .
\end{aligned}
$$

