ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

M.Sc. PHYSICS - I SEMESTER

SEMESTER EXAMINATION- OCTOBER 2018

PH 7518 - ANALYTICAL TOOLS FOR MATHEMATICAL PHYSICS
Time-1 hr.
Maximum Marks-30
This question paper has 2 printed pages and 1 part

Answer any THREE full questions.

1. Consider the vectors $|u\rangle=\left(\begin{array}{c}1 \\ 3+2 i \\ 8 i\end{array}\right)$ and $|v\rangle=\left(\begin{array}{c}4+3 i \\ \sqrt{3} i \\ 1\end{array}\right)$.
(a) Calculate $\||u\rangle \|$ and $\||v\rangle \|$
(b) Compute $\langle u \mid v\rangle$
(c) Normalize each of the vectors
(d) Find the angle between the two vectors
(e) Compute the outer product $|v\rangle\langle u|$
2. Consider a mathematician who uses the vectors $\quad\left|e_{1}\right\rangle=\binom{1}{-1}, \quad\left|e_{2}\right\rangle=\binom{-2}{0} \quad$ as his basis vectors.
(a) If he wants to transform into the cartesian space, what should his transformation matrix be?
(3 marks)
(b) If the matrix $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ is the rotation matrix for a rotation of angle $\theta=90^{\circ}$, what is the equivalent matrix in the mathematician's space?
3. Consider the vectors: $|a\rangle=\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right),|b\rangle=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$ and $|c\rangle=\left(\begin{array}{r}2 \\ -1 \\ -1\end{array}\right)$.
(a) Perform Gram-Schmidt orthogonalization
(b) Normalize the vectors
4. Consider the system of linear equations $\begin{gathered}0.28 x+9.24 y=38.64 \\ 1.44 x+0.1 y=4.62\end{gathered}$
(a) Can this equation be solved? If yes, find the solution using Gauss elimination and if not elucidate.
(b) Consider the coefficient matrix for the same system
i. Find the eigen values for the matrix
ii. Find the corresponding eigen vectors
