Registration Number:

Date & session:

ST JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc (CHEMISTRY) – 2nd SEMESTER SEMESTER EXAMINATION: APRIL 2024 (Examination conducted in May / June 2024) <u>CH 8122 – INORGANIC CHEMISTRY II</u> (For current batch students only)

Time: 2 Hours

Max Marks: 50

This paper contains TWO printed pages and THREE parts

PART-A

Answer any EIGHT of the following questions.

8 X 2 = 16

- 1. Mention the coordination number and geometry of Re in Ca[ReH₉].
- 2. Sketch the crystal field splitting diagram for [Ni(CN)₄]²⁻.
- Which of the following complexes is more stable? Give reason. [Cu(trien)(H₂O)₂]²⁺ or [Cu(cyclen)(H₂O)₂]²⁺, where trien: tri(ethylenediamine), cyclen: 1,4,7,10-Tetraazacyclododecane
- 4. Compare the IR spectra of *fac* and *mer*-[MA₃B₃] isomers.
- 5. Calculate the number of microstates for d⁴ configuration.
- 6. Many lanthanide complexes display weak but sharp absorption spectra. Give reasons.
- 7. List the factors contributing to the bandwidth of electronic absorption spectra.
- 8. With a suitable diagram, illustrate the super exchange mechanism of antiferromagnetic coupling between two metal centers by a bridging ligand.
- 9. Depict the binding modes of hydride ligands in metal hydrides showing i) 3*c*-2*e* and ii) 4*c*-2*e* interactions.
- 10. Draw the optical isomers of *cis*- $[CoCl(NH_3)(en)_2]^{2+}$ complex ion.

PART-B

Answer any TWO of the following questions.

2 X 12 = 24

11. a) Account for the higher lattice energy value of NiF₂ (3060 kJmol⁻¹) compared to ZnF_2 (2985 kJmol⁻¹).

b) Sketch a qualitative molecular orbital energy level diagram for an octahedral ML_6 complex with only σ - bonding.

c) Which of the following ligands will form a more stable complex with a M(II) ion under basic conditions? Malonic acid $CH_2(COOH)_2$ or acetylacetone $CH_2(COCH_3)_2$. Give reason. d) Calculate the magnetic moment of $K_3[FeF_6]$ using the following data:

 χ_{M} (corrected) =14.6 x 10⁻³ (B.M.)²K⁻¹ at 300 K. What is the calculated spin-only magnetic moment for this complex? (3+3+3+3)

CH 8122_B_24

12. a) Identify the type of unidentate coordination mode of NO₂ ligand in complexes (A) and (B) using the IR spectral data given below. Explain.

Compound	ν(NO), cm ⁻¹
$K_{3}[Co(NO_{2})_{6}](A)$	1386, 1332
$[Co(NH_3)_5(NO_2)]Cl_2(B)$	1468, 1065

b) A solution of $[Cr(OH_2)_6]^{3+}$ is pale green-blue ($\epsilon_{max} = 15 \text{ dm}^3 \text{mol}^{-1} \text{cm}^{-1}$), but a solution of $[CrO_4]^{2-1}$ is intense yellow ($\epsilon_{max} = 4500 \text{ dm}^3 \text{mol}^{-1} \text{cm}^{-1}$). Identify the origins of electronic transitions in these complexes and explain their relative intensities.

c) Arrange the following terms in the order of increasing energy: ¹G, ¹S, ³F, ³P. Give reasons for your answer.

d) Explain spin-crossover with an example. (3+3+3+3)

13. a) Compare the C-O and M-C bond distances in $[V(CO)_6]^-$ and $[Mn(CO)_6]^+$. Explain.

b) Deduce the total electron count and predict the skeletal structure of HRu₄N(CO)₁₂.

c) What is Tolman cone angle? Between the following, identify the one with a larger Tolman cone angle.

i) P(*n*-propyl)₃ or ii) P(*i*-propyl)₃

d) Proton NMR spectra of titanocene, $[Ti(C_5H_5)_4]$ shows a single peak at 62°C and two peaks at -27°C. Explain this on the basis of hapticity of the ligand. (3+3+3+3)

PART-CAnswer any TWO of the following questions.2 X 5 = 10

- 14. a) Predict the type of distortion in $[Ti(H_2O)_6]^{3+}$ based on stabilization energy.
 - b) Which of the following conversions is accompanied by a larger change in metal-ligand bond distance? Justify.

i)
$$[Fe(CN)_6]^{3-}$$
 → $[Fe(CN)_6]^{2-}$
ii) $[Co(NH_3)_6]^{3+}$ → $[Co(NH_3)_6]^{2+}$ (2+3)

- 15. Assign the electronic transitions in [MCl₄]⁻ ion using an Orgel diagram, where M is a firstrow transition metal ion with two unpaired electrons in 'e' orbitals.
- 16. a) Predict the feasibility of formation of the following complexes (X and Y) using the log K values given below. (R = 8.314 kJmol⁻¹) Justify.

Compound	log K at 300 K
[Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ (X)	2.0
[Cu(NH ₃) ₅ (H ₂ O)] ²⁺ (Y)	0.5

b) Identify the one with a higher magnetic moment among the following based on the given data. (Hint: Both ions have a single unpaired electron each)

i)
$$Ce^{3+}$$
 (L = 3, S = $\frac{1}{2}$, g = 0.857)
ii) Ti^{3+} (L = 2, S = $\frac{1}{2}$, g = 2) (2+3)

CH 8122_B_24