Registration Number:

Date & Session:

ST JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc. (Chemistry) – II SEMESTER SEMESTER EXAMINATION: APRIL 2024 (Examination conducted in May/June 2024) <u>CH 8422: Spectroscopy II</u> (for current batch students only)

Time: 2 Hours

Max. Marks: 50

This question paper contains <u>FIVE</u> printed pages and <u>THREE</u> parts. (Spectral data is given towards the end of this paper.)

Part A

Answer any <u>EIGHT</u> questions. Each question carries <u>TWO</u> marks. (8 x 2= 16)

1. Explain why the two equivalent methyl groups in the ¹H-NMR spectrum of the following compound appear at -4.25 ppm far upfield of TMS.

- 2. Sketch a schematic diagram to represent the four general stages involved in any 2D NMR experiment.
- 3. Draw the ¹H-¹³C correlation HETCOR spectrum of 2-nitropropane.
- 4. What information do you obtain from DEPT-135 data in ¹³C-NMR spectroscopy?
- 5. How does conjugation affect the position of λ_{max} of compounds in UV-visible spectrum?
- 6. What is the 'fingerprint' region in an IR spectrum? What is its main application in the structural analysis of organic compounds?
- 7. Name the internal standard employed in EPR spectral analysis and provide reason for its selection.
- 8. Between CH₃⁺ and C₂H₅⁺, which ion would experience the highest deflection in a mass spectrometer? Provide reason for your selection.
- 9. Can you elaborate on why the base peak for *t*-butyl alcohol appears at m/z = 57?
- 10. Arrange the following compounds in increasing order of their isomer shift values. Provide appropriate justification.

Fe, Fe²⁺, Fe³⁺

Part B Answer any <u>TWO</u> questions. Each question carries <u>TWELVE</u> marks.

(2 x 12= 24)

11. (a) Using a tree diagram construct the splitting pattern that would be observed for H_a and H_b in the following compound. $J_{ab} = 2$ Hz; $J_{ac} = 15$ Hz; $J_{bc} = 7$ Hz.

(b) How many ¹³C signals (i.e. chemically distinct C atoms) would you expect for each of the following compounds?

(c) A methine carbon gives an inverted peak in an attached proton test (APT) experiment. Explain the reason. (4+4+4)

12. (a) Give the number of chemically non-equivalent protons that are expected in ¹H-NMR spectra of the following compounds.

(b) Explain how polar solvents influence π - π * and n- π * transitions in organic molecules.

(c) Compare and contrast the advantages and limitations of ENDOR and ELDOR techniques in investigating paramagnetic species and molecular environments.

(d) In Mossbauer studies, a source emitting at 14.4 KeV (3.48×10^{18} Hz) had to be moved towards absorber at 2.2 mm/s for resonance. Calculate the shift of frequency between source and absorber. (3+3+3+3)

13. (a) Calculate the number of hyperfine lines observed for the radicals of the following molecules.

(b) Elucidate the mechanism to show why the presence of γ -hydrogen is crucial for facilitating the McLafferty rearrangement.

(c) The mass spectrum of the product formed in the following reaction exhibits M+, M+2 and M+4 peaks in the intensity of 1:2:1. Identify the HX and product 'P' in the following reaction with proper justification.

(Note: In the following reaction -OH is replaced by 'X')

(4+4+4)

Part C

Answer any <u>TWO</u> questions. Each question carries <u>FIVE</u> marks. (2 x 5= 10)

- 14. (a) Among the following isomers of C_4H_6 given below, the compound which exhibits an absorption band at 3300 cm⁻¹ is
 - (i) 1,3 butadiene (ii) 1-Butyne (iii) 2-Butyne (iv) Cyclobutene

(b) Match the following three compounds to the corresponding stretching frequencies at 1750, 1770, and 1800 cm⁻¹. Justify your answer.

15. Deduce the structure of an organic compound with the molecular formula C₁₀H₉NO₂. The given spectral data is

IR: 2210, 1724 cm⁻¹

¹H NMR: 1.4 (triplet, 3H, J = 7.1 Hz)

4.4 (quartet, 2H, J = 7.1 Hz)

7.7 (doublet, 2H, J = 7.0 Hz)

8.2 (doublet, 2H, J = 7.0 Hz) ppm

¹³C NMR: 16, 62, 118, 119, 125, 126, 127 and 168 ppm.

16. Determine the structure of a compound with formula C₆H₅Br₂N. The proton NMR spectrum is shown. The infrared spectrum has medium bands at 3420 and 3315 cm⁻¹ and a strong band at 1612 cm⁻¹. The normal carbon, DEPT-135, and DEPT-90 spectra data are tabulated. Show all logical steps in analysing the spectral data and propose possible structure of the compound.

3

Approximate IR Absorption Frequencies

Bond	Frequency (cm ⁻¹)	Intensity
O-H (alcohol)	3650-3200	Strong, broad
O-H (carboxylic acid)	3300–2500	Strong, very broad
N–H	3500–3300	Medium, broad
C-H	3300–2700	Medium
C≡N	2260-2220	Medium
C≡C	2260-2100	Medium to weak
C=O	1780–1650	Strong
CO	1250-1050	Strong

Approximate ¹H NMR Chemical Shifts

Hydrogen	δ (ppm)
CH₃	0.8-1.0
CH ₂	1.2-1.5
CH	1.4–1.7
C=C–CH _x	1.7–2.3
O=C-CH _x	2.0-2.7
Ph–CH _x	2.3-3.0
≡C–H	2.5
R ₂ N–CH _x	2.0-2.7
I–CH _x	3.2
Br–CH _x	3.4
CI–CH _x	3.5
F–CH _x	4.4
O–CH _x	3.2-3.8
C=CH	4.5-7.5
Ar–H	6.8-8.5
O=CH	9.0-10.0
ROH	1.0-5.5
ArOH	4.0-12.0
RNH _x	0.5-5.0
CONH _x	5.0-10.0
RCOOH	10–13

Approximate ¹³C NMR Chemical Shifts

Carbon	<u>δ (ppm)</u>
Alkanes	
Methyl	0-30
Methylene	15–55
Methine	25–55
Quaternary	30–40
Alkenes	
C=C	80–145
Alkynes	
C≡C	70–90
Aromatics	110-170
Benzene	128.7
Alcohols, Ethers	
С–О	50-90
Amines	
C–N	40-60
Halogens	
C–F	70–80
C–CI	25–50
C–Br	10–40
C–I	-20-10
Carbonyls, C=O	
R ₂ C=O	190-220
RXC=O(X = O or N)	150-180

Empirical Rules for Dienes

	Homoannular (cisoid)	Heteroannular (transoid)
Parent	253 nm	214 nm
Increments for		
Double bond for extending conjugation	30	30
Alkyl substituent or ring residue	5	5
Exocyclic double bond	5	5
Polar grouping		
-OCOCH ₃	0	0
-OR	6	6
-Cl, -Br	5	5
-NR ₂	60	60

Empirical Rues for Enones

Base values:	
Six-membered ring or acyclic parent enone	215 nm
Five-membered ring	202 nm
Acyclic dienone	245 nm
Increments for:	
Double-bond-extending conjugation	30
Alkyl group or ring residue	α 10
	γ and higher 18
Polar grouping:	
-OH	α 35
	β 30
	δ 50
-OCOCH ₃	α, β, δ = 6
-OCH ₃	α 35
	β 30
	γ 17
	δ 31
-Cl	α 15
	β 30
-Br	α 25
	β 30
-NH ₂	β 95
Exocyclic double bond	5
Homocyclic diene component	39