Date & Session:

ST JOSEPH'S UNIVERSITY, BENGALURU -27 B.Sc (CHEMISTRY) – 4th SEMESTER SEMESTER EXAMINATION: April 2024 (Examination conducted in May / June 2024) CH 422 – CHEMISTRY IV

Time: 2 Hours Max Marks: 60

This paper contains FOUR printed pages and THREE parts.

(For current batch students only)

(Spectral data is provided towards the end of this question paper)

PART-A

Answer any SEVEN of the following questions.

 $(7 \times 2 = 14)$

1. Identify the microwave active molecules from the following;

- 2. Calculate the zero point energy of HCl, if the fundamental vibrational frequency is 2992 cm⁻¹?
- 3. Why are Stokes lines more intense than anti-Stokes lines?
- 4. Which of the following molecule will absorb at longer wavelength? Justify your answer.
 - i) 1, 3-butadiene (CH₂=CH–CH=CH₂) ii) 1, 4-pentadiene (CH₂=CH-CH₂-CH=CH₂).
- 5. Predict the *E* and *Z* configuration of the given molecules.

i)
$$CI$$
 H $ii)$ H CH_2CH_3 $C=C$ H_3C Br H_3C CH_3

- 6. What are meso compounds? Give an example.
- 7. The boiling point of n-pentane is higher than the neopentane. Give reason.
- 8. Give the IUPAC name of the following compounds.

9. Identify the major product formed from the following reactions.

$$H_2SO_4$$
 ? H_2SO_4 ? H_2SO_4 ?

PART - B

Answer any SIX of the following questions.

 $(6 \times 6 = 36)$

- 10. a) The bond length of CO molecule is 1.53×10^{-10} m. Calculate the reduced mass and moment of inertia of the molecule. Given: atomic masses are 12 C = 1.99×10^{-26} kg and 16 O = 2.66×10^{-26} kg.
 - b) Give the pictorial representation of the fundamental vibrations of CO_2 molecule and explain their IR activity. (3+3)
- 11. a) Depict the rotational-vibrational energy level diagram for the allowed transitions of a diatomic molecule.
 - b) Discuss the mutual exclusion principle with a suitable example. (3+3)
- 12. a) The UV spectrum of acetone (CH₃COCH₃) shows two absorption bands at λ_{max} = 195 nm and λ_{max} = 274 nm. Which electronic transition is responsible for each of these bands? Explain your answer.
 - b) The ¹H NMR spectrum of undecadeuteriocyclohexane (C₆D₁₁H) obtained at room temperature is different from that obtained at -100 °C. Explain. (3+3)
- 13. a) Illustrate shielding and deshielding in ¹H NMR taking CH₃CHClCH₃ as an example.
 - b) Esters and amides show different C=O stretching frequency in IR spectroscopy. Give reason. (3+3)
- 14. Discuss the conformational analysis of butane with potential energy diagram.
- 15. a) Predict the product/s for the following and propose the probable mechanism.

b) Complete the following reaction.

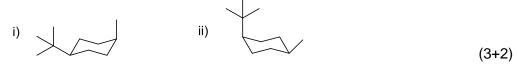
ii) OH
$$\frac{\mathsf{HBr}}{\Delta}$$

(3+3)

16. a) Convert the given molecules to Fischer configuration.

i)
$$H_3C$$
 H_3C H_3C

b) Propose a synthetic route for the preparation of following molecule using Williamson ether synthesis.


- 17. a) Write the possible enantiomers and diastereoisomers of 2-hydroxy-3-chloro pentane.
 - b) Define specific rotation. Give its mathematical expression and explain the terms. (3+3)

PART - C

Answer any TWO of the following questions.

 $(2 \times 5 = 10)$

- 18. a) With suitable explanation arrange the following in their increasing order of stretching frequency of vibration.
 - i) C-C ii) C-H iii) C-Cl iv) C-O
 - b) Identify the more stable conformation from the structures given below. Justify.

- 19. Write the structure of hex-4-ene-3-ol and write all the possible stereoisomers for the molecule. Give the R/S and E/Z configuration for all the stereoisomers.
- 20. Propose the structure of the organic compound with the molecular formula C₈H₉Br from the chemical shift values in ¹H NMR spectrum given below. Assign the spectral signals to the structure you propose.

δ(ppm)	splitting	Integration
2.0	d	3H
5.15	q	1H
7.35	m	5H

Table 1: NMR data

Type of Proton	Chemical Shift (ppm)	Type of Proton	Chemical Shift (ppm)
R—CH ₃	0.9 – 1.2	X—CH ₂ R (X: Cl, Br, I)	3.1 – 3.8
R I R—CH₂	1.2 – 1.5	R—OH	variable, 1 – 5
R R—CH I B	1.4 – 1.9	R—NH ₂	variable, 1 – 5
R C=C CHR ₂	1.5 – 2.5	R R	4.5 – 6.0
O II CH3	2.0 – 2.6	Ar—H	6.0 – 8.5
Ar—CH ₃	2.2 – 2.5	O H	9.5 – 10.5
R—C≡C—H	2.5 – 3.0	R C OH	10 – 13
(H)R—O—CH ₃	3.3 - 4.0	3.5 5.6	

Table 2: IR data

Table 13.4 Impo	rtant IR Stretching Frequencies	
Type of bond	Wavenumber (cm ⁻¹)	Intensity
C≡N	2260–2220	medium
C≡C	2260-2100	medium to weak
C=C	1680–1600	medium
C=N	1650–1550	medium
	~1600 and ~1500–1430	strong to weak
C=O	1780–1650	strong
С-О	1250-1050	strong
C-N	1230–1020	medium
O—H (alcohol)	3650–3200	strong, broad
O—H (carboxylic acid)	3300–2500	strong, very broad
N—H	3500–3300	medium, broad
С—Н	3300–2700	medium