Register number:
Date and session:

ST JOSEPH'S UNIVERSITY, BANGALORE - 27
 M.Sc MATHEMATICS - II SEMESTER
 SEMESTER EXAMINATION: APRIL 2024
 (Examination conducted in May/June 2024)
 MT 8121: ALGEBRA II
 (For current batch students only)

Duration: 2 Hours
Max. Marks: 50

1. The paper contains two printed pages and one part.
2. Answer any FIVE FULL questions.
3. All multiple choice questions have 1 or more than one correct option. Full marks will be awarded only for writing all correct options in your answer script.
4. All True/False questions must be justified.
5. a) Compute $\left(1+\theta+\theta^{2}\right)^{-1}$ in $\mathbb{Q}(\theta)$ where θ is a root of the irreducible polynomial $x^{3}-2 x-2$.
b) Let F be a field and $p(x) \in F[x]$ be irreducible. Suppose K is an extension over F containing a root α of $p(x)$ then show that $F(\alpha)$ is isomorphic to $\frac{F[x]}{\langle p(x)\rangle}$. $[5+5]$
6. a) Let K / F be a field extension and let $\alpha \in K$ be algebraic over F. Show that there exists a unique monic irreducible polynomial $m_{\alpha, F}(x) \in F[x]$ which has α as a root. Further, show that given any polynomial $f(x) \in F[x]$, it has α as a root if and only if $m_{\alpha, F}(x)$ divides $f(x)$.
b) Compute $[\mathbb{Q}(\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{-3}}): \mathbb{Q}]$.

$$
[6+4]
$$

3. a) Compute the splitting field of $x^{4}-4$ over \mathbb{Q} and hence compute its dimension.
b) Show that every irreducible polynomial over a finite field F is separable.

OR

c) Let F be the rational field $\mathbb{Z}_{3}(t)$. Is the polynomial $x^{3}-t$ separable over F ? Justify.
d) Compute the cyclotomic polynomial $\Phi_{12}(x)$.
4. a) Show that $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}, i))$ is isomorphic to $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
b) Which of the following are Galois extensions? (Write all the correct options in your answer booklet. Explanation is not required)
i. The splitting field of $x^{4}-4$ over \mathbb{Q}
iii. $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$
ii. The splitting field of $x^{3}-t$ over $\mathbb{Z}_{2}(t)$
iv. $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$.
5. a) State the fundamental theorem of Galois Theory.
b) Draw the 1-1 correspondence between subgroups of $\operatorname{Gal}\left(\mathbb{F}_{2^{36}} / \mathbb{F}_{2}\right)$ and subfields of $\mathbb{F}_{2^{36}}$.
6. a) Prove that the irreducible polynomial $x^{4}+1 \in \mathbb{Z}[x]$ is reducible modulo every prime number p.
b) Show that the Galois group of the cyclotomic extension $\left.\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ is isomorphic to \mathbb{Z}_{n}^{\times}.
7. a) Compute the discriminant of the polynomial $x^{4}-1$.
b) Match the polynomials given below to their corresponding Galois groups. (You can use the formula, discriminant D of $f(x)=x^{3}+a x^{2}+b x+c$ is $D=a^{2} b^{2}-4 b^{3}-4 a^{3} c-27 c^{2}+18 a b c$ wherever required.)

Polynomial	Galois group
$x^{3}+2 x+14$	$\{1\}$
$x^{3}+x^{2}-x-1$	\mathbb{Z}_{2}
$x^{3}+x^{2}-2 x-1$	S_{3}
$x^{3}+x^{2}+x$	A_{3}

