Register number:

Date and session:

ST JOSEPH'S UNIVERSITY, BANGALORE - 27 M.Sc MATHEMATICS - II SEMESTER SEMESTER EXAMINATION: APRIL 2024 (Examination conducted in May/June 2024) <u>MT 8121: ALGEBRA II</u> (For current batch students only)

Duration: 2 Hours

Max. Marks: 50

- 1. The paper contains two printed pages and one part.
- 2. Answer any **FIVE FULL** questions.

3. All multiple choice questions have 1 or more than one correct option. Full marks will be awarded only for writing **all correct options** in your answer script.4. All True/False questions must be justified.

- 1. a) Compute $(1 + \theta + \theta^2)^{-1}$ in $\mathbb{Q}(\theta)$ where θ is a root of the irreducible polynomial $x^3 2x 2$.
 - b) Let F be a field and $p(x) \in F[x]$ be irreducible. Suppose K is an extension over F containing a root α of p(x) then show that $F(\alpha)$ is isomorphic to $\frac{F[x]}{\langle p(x) \rangle}$. [5+5]
- 2. a) Let K/F be a field extension and let $\alpha \in K$ be algebraic over F. Show that there exists a unique monic irreducible polynomial $m_{\alpha,F}(x) \in F[x]$ which has α as a root. Further, show that given any polynomial $f(x) \in F[x]$, it has α as a root if and only if $m_{\alpha,F}(x)$ divides f(x).
 - b) Compute $\left[\mathbb{Q}\left(\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{-3}}\right):\mathbb{Q}\right].$ [6+4]
- 3. a) Compute the splitting field of $x^4 4$ over \mathbb{Q} and hence compute its dimension.
 - b) Show that every irreducible polynomial over a finite field F is separable. [5+5]

OR

- c) Let F be the rational field $\mathbb{Z}_3(t)$. Is the polynomial $x^3 t$ separable over F? Justify.
- d) Compute the cyclotomic polynomial $\Phi_{12}(x)$. [4+6]
- 4. a) Show that $\operatorname{Aut}(\mathbb{Q}(\sqrt{2},i))$ is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.
 - b) Which of the following are Galois extensions? (Write all the correct options in your answer booklet. Explanation is not required)
 - i. The splitting field of $x^4 4$ over \mathbb{Q} iii. $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ ii. The splitting field of $x^3 - t$ over $\mathbb{Z}_2(t)$ iv. $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$. [6+4]
- 5. a) State the fundamental theorem of Galois Theory.

b) Draw the 1-1 correspondence between subgroups of $\operatorname{Gal}(\mathbb{F}_{2^{36}}/\mathbb{F}_2)$ and subfields of $\mathbb{F}_{2^{36}}$.

[4+6]

[4+6]

- 6. a) Prove that the irreducible polynomial $x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime number p.
 - b) Show that the Galois group of the cyclotomic extension $\mathbb{Q}(\zeta_n)/\mathbb{Q})$ is isomorphic to \mathbb{Z}_n^{\times} . [5+5]
- 7. a) Compute the discriminant of the polynomial $x^4 1$.
 - b) Match the polynomials given below to their corresponding Galois groups. (You can use the formula, discriminant D of $f(x) = x^3 + ax^2 + bx + c$ is $D = a^2b^2 4b^3 4a^3c 27c^2 + 18abc$ wherever required.)

Polynomial	Galois group
$x^3 + 2x + 14$	{1}
$x^3 + x^2 - x - 1$	\mathbb{Z}_2
$x^3 + x^2 - 2x - 1$	S_3
$x^3 + x^2 + x$	A_3
	-