

Register number:

Date and session:

## ST JOSEPH'S UNIVERSITY, BENGALURU-27 M.Sc (MATHEMATICS) - II SEMESTER SEMESTER EXAMINATION: April 2024 (Examination conducted in May/June 2024) **MT 8221: MEASURE AND INTEGRATION**

## (For current batch students only)

## **Duration:** 2 Hours

Max. Marks: 50

[7]

[10]

- 1. The paper contains  $\mathbf{TWO}$  printed pages and  $\mathbf{ONE}$  part.
- 2. Attempt any **FIVE FULL** questions.
- 1. (a) State and prove continuity from below for an arbitrary measure space  $(X, \mathcal{S}, \mu)$ . [5]
  - (b) Let A be the subset of [0, 1] which consists of all numbers which do not have the digit 4 appearing in their decimal expansion. Find m(A). [5]
- 2. (a) Let  $E \subseteq \mathbb{R}^n$ . Show that the following are equivalent:
  - i. E is Lebesgue measurable.
  - ii. Given an  $\varepsilon > 0$ , there exists a closed set  $F_{\varepsilon}$  such that  $F_{\varepsilon} \subseteq E$  and  $\mu_*(E \setminus F_{\varepsilon}) < \varepsilon$ .
  - iii. There exists an  $F_{\sigma}$  set F such that  $F \subseteq E$  and  $\mu_*(E \setminus F) = 0$ .
  - (b) Show that there exists closed sets A and B with m(A) = m(B) = 0, but m(A + B) > 0(Hint: Think of Cantor set) [3]
- 3. (a) Show that if  $\{f_n\}$  is a sequence of measurable functions on  $(X, \mathcal{S}, \mu)$  then  $\sup_n \{f_n(x)\}$  and  $\inf_n \{f_n(x)\}$  are also measurable. [6]
  - (b) Let (X, S) be a measurable space. Show that a function  $f : X \to \mathbb{R}$  is measurable if  $f^{-1}((r, \infty))$  is a measurable set for every rational number r. [4]

OR

- (c) State and prove Egorov's Theorem.
- 4. (a) State and prove the linearity and additivity properties for simple functions. [7]
  - (b) Let  $f : [0,1] \to \mathbb{R}$  be measurable and suppose the function g(x,y) := |f(x) f(y)| is integrable on  $[0,1] \times [0,1]$ . Show that f(x) is integrable on [0,1]. (HINT: Fubini's Theorem). [3]

- 5. (a) State and prove Lebesgue dominated convergence theorem.
  - (b) If  $f = \lim_{n \to \infty} f_n$  then in which of the following case(s) do(es)  $\lim_{n \to \infty} \int_X f_n = \int_X f$  hold? [3]
    - i.  $f_n = \chi_{\{1,2,\dots,n\}}$  on the measure space iii.  $f_n = \frac{x}{n}\chi_{[0,1]}$  on the measure space  $(\mathbb{N}, \mathscr{P}(\mathbb{N}), \text{ counting measure}).$   $(\mathbb{R}, \mathcal{L}(\mathbb{R}), m).$
    - ii.  $f_n = \chi_{\{1,2,\dots,n\}}$  on the measure space iv.  $f_n = n \cdot \chi_{[0,1/n]}$  on the measure space  $(\mathbb{N}, \mathscr{P}(\mathbb{N}), \text{Lebesgue measure}).$   $(\mathbb{R}, \mathcal{L}(\mathbb{R}), m).$

6. (a) Let p and q be conjugate exponents and let  $g \in L^q(X)$ . Show that the function  $T_g: L^p(X) \to \mathbb{R}$ defined by  $T_g(f) = \int_X fg d\mu$  is a continuous linear functional. [5]

- (b) Let  $(X, F, \mu)$  be a measure space. Let  $1 \le p, q, r \le \infty$  and  $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$ . Let  $f \in L^p(\mu), g \in L^q(\mu)$ and  $h \in L^r(\mu)$ . Show that  $fgh \in L^1(\mu)$ . (HINT: Hölder's inequality) [5]
- 7. (a) Let  $[a, b] \subset \mathbb{R}$  and f be a function of bounded variation on [a, b]. Show that f is bounded and |f| is of bounded variation. [6]
  - (b) Show that if  $f:[a,b] \to \mathbb{R}$  is absolutely continuous then f maps measure 0 sets to measure 0 sets.

[7]