ST JOSEPH'S UNIVERSITY, BENGALURU-27
 M.Sc (MATHEMATICS) - II SEMESTER
 SEMESTER EXAMINATION: April 2024
 (Examination conducted in May/June 2024)
 MT 8221: MEASURE AND INTEGRATION

(For current batch students only)
Duration: 2 Hours
Max. Marks: 50

1. The paper contains TWO printed pages and ONE part.
2. Attempt any FIVE FULL questions.
3. (a) State and prove continuity from below for an arbitrary measure space (X, \mathcal{S}, μ).
(b) Let A be the subset of $[0,1]$ which consists of all numbers which do not have the digit 4 appearing in their decimal expansion. Find $m(A)$.
4. (a) Let $E \subseteq \mathbb{R}^{n}$. Show that the following are equivalent:
i. E is Lebesgue measurable.
ii. Given an $\varepsilon>0$, there exists a closed set F_{ε} such that $F_{\varepsilon} \subseteq E$ and $\mu_{*}\left(E \backslash F_{\varepsilon}\right)<\varepsilon$.
iii. There exists an F_{σ} set F such that $F \subseteq E$ and $\mu_{*}(E \backslash F)=0$.
(b) Show that there exists closed sets A and B with $m(A)=m(B)=0$, but $m(A+B)>0$ (Hint: Think of Cantor set)
5. (a) Show that if $\left\{f_{n}\right\}$ is a sequence of measurable functions on (X, \mathcal{S}, μ) then $\sup _{n}\left\{f_{n}(x)\right\}$ and $\inf _{n}\left\{f_{n}(x)\right\}$ are also measurable.
(b) Let (X, S) be a measurable space. Show that a function $f: X \rightarrow \mathbb{R}$ is measurable if $f^{-1}((r, \infty))$ is a measurable set for every rational number r.

OR
(c) State and prove Egorov's Theorem.
4. (a) State and prove the linearity and additivity properties for simple functions.
(b) Let $f:[0,1] \rightarrow \mathbb{R}$ be measurable and suppose the function $g(x, y):=|f(x)-f(y)|$ is integrable on $[0,1] \times[0,1]$. Show that $f(x)$ is integrable on $[0,1]$. (HINT: Fubini's Theorem).
5. (a) State and prove Lebesgue dominated convergence theorem.
(b) If $f=\lim _{n \rightarrow \infty} f_{n}$ then in which of the following case(s) do(es) $\lim _{n \rightarrow \infty} \int_{X} f_{n}=\int_{X} f$ hold?
i. $f_{n}=\chi_{\{1,2, \cdots, n\}}$ on the measure space iii. $f_{n}=\frac{x}{n} \chi_{[0,1]}$ on the measure space ($\mathbb{N}, \mathscr{P}(\mathbb{N})$, counting measure).
ii. $f_{n}=\chi_{\{1,2, \cdots, n\}}$ on the measure space iv. $f_{n}=n \cdot \chi_{[0,1 / n]}$ on the measure space $(\mathbb{N}, \mathscr{P}(\mathbb{N})$, Lebesgue measure).
$(\mathbb{R}, \mathcal{L}(\mathbb{R}), m)$.
6. (a) Let p and q be conjugate exponents and let $g \in L^{q}(X)$. Show that the function $T_{g}: L^{p}(X) \rightarrow \mathbb{R}$ defined by $T_{g}(f)=\int_{X} f g d \mu$ is a continuous linear functional.
(b) Let (X, F, μ) be a measure space. Let $1 \leq p, q, r \leq \infty$ and $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$. Let $f \in L^{p}(\mu), g \in L^{q}(\mu)$ and $h \in L^{r}(\mu)$. Show that $f g h \in L^{1}(\mu)$. (HINT: Hölder's inequality)
7. (a) Let $[a, b] \subset \mathbb{R}$ and f be a function of bounded variation on $[a, b]$. Show that f is bounded and $|f|$ is of bounded variation.
(b) Show that if $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous then f maps measure 0 sets to measure 0 sets.

