

Register number:
Date and session:

ST JOSEPH'S UNIVERSITY, BENGALURU-27
 M.Sc MATHEMATICS - $4^{\text {th }}$ SEMESTER
 SEMESTER EXAMINATION: APRIL 2024
 (Examination conducted in May/June 2024)
 MT 0122- ADVANCED GRAPH THEORY

(For current batch students only)
Duration: 2 Hours
Max. Marks: 50

1. The paper contains TWO pages.
2. Attempt any FIVE FULL questions.
3. (a) Define the diameter and the periphery of a graph. Find the periphery of the Petersen graph.
(b) Prove that a connected graph G of order $n \geq 2$ has locating number $(n-1)$ if and only if G is isomorphic to the complete graph K_{n}.
4. (a) Check if the following graphs are planar. Justify your answer.

(b) Prove that if G is maximal outer planar graph with order $n \geq 3$, then G has $n-2$ interior regions.
[5m]
5. (a) Prove that a graph has a dual if and only if it is planar.

OR

(b) Define vertex transitive graphs. Is the graph given below vertex transitive? Justify.
[5m]

(c) Define circulant graphs. Give a circulant graph isomorphic to complete graph K_{8} and cycle C_{8}.
[5m]
4. Let G be a connected vertex-transitive graph with minimum degree $\delta(G)$ and edge connectivity $\lambda(G)$, then prove that $\lambda(G)=\delta(G)$.
[10m]
5. (a) Prove that any De Bruijn digraph $B(d, n)$ contains Euler circuits and Hamilton cycles. Also, find an Euler circuit in $B(2,3)$.
(b) Define Butterfly networks $B F(n)$. Draw $B F(2), B F(3)$ and $B F(4)$.
6. Prove that the direct product and the strong product are each associative. [10m]
7. Prove the distance formula for the lexicographic product of graphs.
[10m]

