ST.JOSEPH'S UNIVERSITY, BENGALURU -27
 B.Sc. (MATHEMATICS) - II SEMESTER
 SEMESTER EXAMINATION: APRIL 2024
 (Examination conducted in May/June 2024)
 MT 221 - MATHEMATICS- II (For current students only)

Time: 2 Hours

Reg. Number:
Date \& session:

Max Marks: 60

This paper contains 1 printed page and 3 parts

PART A

Answer any Six of the following:

1. Show that the inverse of an element in a group is unique.
2. On the set of positive rational numbers Q^{+}, the binary operation $*$ is defined by $a * b=\frac{a b}{2}$. Find the identity element and inverse of 4.
3. Find the area bounded between the cissoid $y^{2}(a-x)=x^{3}, a>0$ and its asymptote.
4. Find the slope of the tangent to the curve $r=a \sin 2 \theta$ at the point $\theta=\frac{\pi}{4}$.
5. Show that the curves $r=a e^{\theta}$ and $r e^{\theta}=b$ intersect orthogonally.
6. Find the envelopes of the family of circles, whose centre lies on the x-axis.
7. Solve $x \frac{d y}{d x}-2 y=2 x$.
8. Find the singular solution of $y=p x+\frac{a}{p}$.

PART B

Answer any three of the following:

9. Show that $G=\{2,4,6,8\}$ forms an abelian group under \times_{10} by using Cayley's table.
10. If a is a generator of a cyclic group G then show that $O(a)=O(G)$.
11. Evaluate
(i) $\int_{0}^{2 a} x^{2} \sqrt{2 a x-x^{2}} d x$
(ii) $\int_{0}^{\infty} \frac{x^{4}}{\left(1+x^{2}\right)^{4}} d x$.
12. Find the surface area of the solid obtained by revolving the cardioid $r=a(1+\cos \theta)$ about the initial line.

PART C

Answer any five of the following:

13. Derive the formula for the derivative of arc length for the cartesian equations.
14. Show that the pedal equation of the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ is $r^{2}=a^{2}-3 p^{2}$.
15. Find all the asymptotes of the curve $2 x^{3}-x^{2} y-2 x y^{2}-4 x^{2}+8 x y-4 x+1=0$.
16. (a) Derive the formula for the radius of curvature of cartesian curves.
(b) Solve $\left[y\left(1+\frac{1}{x}\right)+\cos y\right] d x+[x+\log x-x \sin y] d y=0$.
17. Find the suitable integrating factor and solve $y(8 x-9 y) d x+2 x(x-3 y) d y=0$.
18. Reduce the equation $\left(x^{2}-1\right) p^{2}-2 x y p+y^{2}-1=0$ into Clairaut's form and find the general solution.
19. Show that the family of parabolas $y^{2}=4 a(x+a)$ is self-orthogonal.
